[1] R. S. Acosta Abreu: Control of Markov chains with unknown parameters and metric state space. Submitted for publication. In Spanish.
[2] R. S. Acosta Abreu, O. Hernandez-Lerma:
Iterative adaptive control of denumerable state average-cost Markov systems. Control. Cyber. 14 (1985), 313 - 322.
MR 0842780
[3] V. V. Baranov:
Recursive algorithms of adaptive control in stochastic systems. Cybernetics 17 (1981), 815-824.
MR 0689427
[4] V. V. Baranov:
A recursive algorithm in markovian decision processes. Cybernetics 18 (1982), 499-506.
MR 0712079 |
Zbl 0517.90089
[5] D. P. Bertsekas, S. E. Shreve:
Stochastic Optimal Control- The Discrete Time Case. Academic Press, New York 1978.
MR 0511544 |
Zbl 0471.93002
[6] A. Federgruen, P. J. Schweitzer:
Nonstationary Markov decision problems with converging parameters. J. Optim. Theory Appl. 34 (1981), 207-241.
MR 0625228 |
Zbl 0426.90091
[7] A. Federgruen, H. C. Tijms:
The optimality equation in average cost denumerable state semi-Markov decision problems, recurrency conditions and algorithms. J. Appl. Probab. 15 (1978), 356-373.
MR 0475896 |
Zbl 0386.90060
[8] P. J. Georgin:
Contröle de chaines de Markov sur des espaces arbitraires. Ann. Inst. H. Poincare B 14 (1978), 255-277.
MR 0508929
[9] J. P. Georgin:
Estimation et controle de chaines de Markov sur des espaces arbitraires. In: Lecture Notes Mathematics 636. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1978, pp. 71-113.
MR 0498945
[10] E. I. Gordienko:
Adaptive strategies for certain classes of controlled Markov processes. Theory Probab. Appl. 29 (1985), 504-518.
Zbl 0577.93067
[11] L. G. Gubenko, E. S. Statland: On controlled, discrete-time Markov decision processes. Theory Probab. Math. Statist. 7 (1975), 47-61.
[12] O. Hernández-Lerma:
Approximation and adaptive policies in discounted dynamic programming. Bol. Soc. Mat. Mexicana 30 (1985). In press.
MR 0886123
[13] O. Hernández-Lerma:
Nonstationary value-iteration and adaptive control of discounted semi-Markov processes. J. Math. Anal. Appl. 112 (1985), 435-445.
MR 0813610
[14] O. Hernandez-Lerma, S. I. Marcus:
Adaptive control of service in queueing systems. Syst. Control Lett. 3 (1983), 283-289.
MR 0722958 |
Zbl 0534.90037
[15] O. Hernández-Lerma, S. I. Marcus:
Optimal adaptive control of priority assignment in queueing systems. Syst. Control Lett. 4 (1984), 65 - 75.
MR 0740208
[16] O. Hernández-Lerma, S. I. Marcus:
Adaptive policies for discrete-time stochastic control systems with unknown disturbance distribution. Submitted for publication, 1986.
MR 0912683
[17] O. Hernández-Lerma, S. I. Marcus: Nonparametric adaptive control of discrete-time partially observable stochastic systems. Submitted for publication, 1986.
[18] C. J. Himmelberg T. Parthasarathy, F. S. Van Vleck:
Optimal plans for dynamic programming problems. Math. Oper. Res. 1 (1976), 390-394.
MR 0444043
[19] K. Hinderer:
Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter. (Lecture Notes in Operations Research and Mathematical Systems 33.) Springer-Verlag, Berlin-Heidelberg-New York 1970.
MR 0267890 |
Zbl 0202.18401
[20] A. Hordijk P. J. Schweitzer, H. Tijms:
The asymptotic behaviour of the minimal total expected cost for the denumerable state Markov decision model. J. Appl. Probab. 12 (1975), 298-305.
MR 0378838
[21] P. R. Kumar:
A survey of some results in stochastic adaptive control. SIAM J. Control Optim. 23 (1985), 329-380.
MR 0784574 |
Zbl 0571.93038
[22] M. Kurano:
Discrete-time markovian decision processes with an unknown parameter - average return criterion. J. Oper. Res. Soc. Japan 15 (1972), 67-76.
MR 0343942 |
Zbl 0238.90006
[23] M. Kurano:
Average-optimal adaptive policies in semi-Markov decision processes including an unknown parameter. J. Oper. Res. Soc. Japan 28 (1985), 252-366.
MR 0812416 |
Zbl 0579.90098
[25] P. Mandl:
On the adaptive control of countable Markov chains. In: Probability Theory, Banach Centre Publications 5, PWB-Polish Scientific Publishers, Warsaw 1979, pp. 159- 173.
MR 0561478 |
Zbl 0439.60069
[26] H. L. Royden:
Real Analysis. Macmillan, New York 1968.
MR 0151555
[27] M. Schäl:
Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrsch. verw. Gebiete 32 (1975), 179-196.
MR 0378841
[28] M. Schäl:
Estimation and control in discounted stochastic dynamic programming. Preprint No. 428, Institute for Applied Math., University of Bonn, Bonn 1981.
MR 0875814
[29] H. C. Tijms: On dynamic programming with arbitrary state space, compact action space and the average reward as criterion. Report BW 55/75, Mathematisch Centrum, Amsterdam 1975.
[30] T. Ueno:
Some limit theorems for temporally discrete Markov processes. J. Fac. Science, University of Tokyo 7 (1957), 449-462.
MR 0090921 |
Zbl 0077.33201
[31] D. J. White:
Dynamic programming, Markov chains, and the method of successive approximations. J. Math. Anal. Appl. 6 (1963), 373-376.
MR 0148480
[32] P. Mandl, G. Hiibner:
Transient phenomena and self-optimizing control of Markov chains. Acta Universitatis Carolinae - Math, et Phys. 26 (1985), 1, 35-51.
MR 0830264
[33] A. Hordijk, H. Tijms:
A modified form of the iterative method of dynamic programming. Ann. Statist. 3 (1975), 1, 203-208.
MR 0378837 |
Zbl 0304.90115