[1] K. Winkelbauer:
On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255.
MR 0300751
[2] J. C. Kieffer:
A general formula for the capacity of a stationary nonanticipatory channel. Inform. and Control 26 (1974), 381-391.
MR 0384324
[3] R. M. Gray D. S. Ornstein:
Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 25 (1979), 292-306.
MR 0528007
[4] J. Wolfowitz:
Coding Theorems of Information Theory. 2nd ed. Springer-Verlag, Berlin - Gottingen -New York 1964.
MR 0176851 |
Zbl 0132.39704
[5] J. C. Kieffer: Block coding for a stationary channel satisfying a weak continuity condition. (to appear).
[6] R. M. Gray J. C. Kieffer:
Mutual information rate, distortion and quantization in metric spaces. IEEE Trans. Inform. Theory 26 (1980), 412-422.
MR 0581788
[7] Š. Šujan:
Channels with additive asymptotically mean stationary noise. Kybernetika 17 (1981), 1, 1-15.
MR 0629345
[8] P. Billingsley:
Convergence of Probability Measures. J. Wiley, New York-London-Sydney-Toronto 1968.
MR 0233396 |
Zbl 0172.21201
[9] J. C. Kieffer:
On the transmission of Bernoulli sources over stationary channels. Ann. Prob. 8 (1980), 942-961.
MR 0586778 |
Zbl 0452.94012
[10] Š. Šujan:
A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp.
MR 0465531
[12] R. L. Dobrushin:
A general formulation of the basic Shannon theorem of information theory. (in Russian). Uspehi mat. nauk 14 (1959), 3-104.
MR 0107574
[13] K. Winkelbauer:
On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 2, 127-148.
MR 0275979 |
Zbl 0245.94013
[14] R. M. Gray L. D. Davisson:
Source coding without the ergodic assumption. IEEE Trans. Inform. Theory 20 (1974), 502-516.
MR 0476163
[15] Š. Šujan: Block transmissibility and quantization. (submitted).
[16] F. Topsøe:
Preservation of weak convergence under mappings. Ann. Math. Statist. 38 (1967), 1661-1665.
MR 0219097
[17] Š. Šujan:
On the capacity of asymptotically mean stationary channels. Kybernetika 17 (1981), 3, 222-233.
MR 0628210
[19] J. C. Kieffer:
Some universal noiseless multiterminal source coding theorems. Inform. and Control 46 (1980), 93-107.
MR 0600773 |
Zbl 0452.94013
[20] K. Winkelbauer:
On discrete information sources. Trans. 3rd Prague Conf. Inform. Theory, NČSAV Prague 1964, 765-830.
MR 0166000 |
Zbl 0126.35702
[21] K. Winkelbauer:
On the capactiy of decomposable channels. Trans. 6th Prague Conf. Inform. Theory, Academia, Prague 1973, 903-914.
MR 0371509
[22] R. M. Gray D. L. Neuhoff P. C. Shields:
A generalization of Ornstein's d-distance with applications to information theory. Ann. Prob. 3 (1975), 315-328.
MR 0368127