[1] J. Aczél:
Lectures on Functional Equations and Their Applications. Academic Press, New York 1966.
MR 0208210
[2] D. F. Andrews P. J. Bickel R. R. Hampel P. J. Huber W. H. Rogers, J. W. Tukey: Robust Estimates of Location. Princeton Univ. Press, Princeton, N. J. 1972.
[3] D. E. Boekee:
The $D_f$-information of order s. In: Trans. 8th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1979, 55-68.
MR 0557706
[4] D. D. Boos:
Minimum distance estimators for location and goodness of fit. J. Amer. Statist. Assoc. 76 (1981), 663-670.
MR 0629752 |
Zbl 0475.62030
[5] I. Csiszár:
Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. AS (1963), 85-108.
MR 0164374
[6] I. Csiszár:
Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, (1967) 209-318.
MR 0219345
[7] H. Cramér:
Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, N. J. 1946.
MR 0016588
[8] P. I. Huber:
Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101.
MR 0161415 |
Zbl 0136.39805
[10] S. Kullback, R. A. Leibler:
On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86.
MR 0039968 |
Zbl 0042.38403
[11] L. Le Cam:
On the information contained in additional observations. Ann. Statist. 2 (1974), 630-649.
MR 0436400 |
Zbl 0286.62004
[12] R. Š. Lipcer, A. N. Širjaev:
Statistics of Random Processes. (in Russian). Nauka, Moscow 1974.
MR 0431365
[13] P. W. Millar:
Robust estimation via minimum distance methods. Z. Wahrsch. verw. Gebiete 55 (1981), 73-89.
MR 0606007 |
Zbl 0461.62036
[14] A. M. Mood F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics. McGraw-Hill, New York 1963.
[15] J. Neyman: Contributions to the theory of $\chi^2$-test. In: Proc. 1st Berkeley Symp. on Math. Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239-273.
[16] W. C. Parr, W. R. Schucany:
Minimum distance and robust estimation. J. Amer. Statist. Assoc. 75 (1980), 616-624.
MR 0590691 |
Zbl 0481.62031
[17] C. R. Rao:
Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531-546.
MR 0133192 |
Zbl 0156.39802
[19] P. V. Rao, al.:
Estimation of shift and center of symmetry based on Kolmogorov-Smirnov statistic. Ann. Statist. 3 (1975), 862-873.
MR 0375609
[20] I. Vajda:
Limit theorems for total variation of Cartesian product measures. Studia Sci. Math. Hungar. 6 (1971), 317-333.
MR 0310950
[21] I. Vajda:
On the f-divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223-234.
MR 0335163 |
Zbl 0248.62001
[22] I. Vajda:
$\chi^\alpha$-divergence and generalized Fisher information. In: Trans. 6th Prague Conf. on Inform. Theory, etc., Academia, Prague 1973, 873 - 886.
MR 0356302 |
Zbl 0297.62003
[23] I. Vajda: Theory of Information and Statistical Decision. (in Slovak), Alfa, Bratislava 1981.
[24] I. Vajda:
A new general approach to minimum distance estimation. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983.
MR 0757729 |
Zbl 0552.62016
[25] I. Vajda:
Minimum divergence principle in statistical estimation. Statistics and Decisions (submitted).
Zbl 0558.62004
[26] M. Vošvrda:
On second order efficiency of minimum divergence estimators. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983.
MR 0757940
[28] P. W. Zehna:
Invariance of maximum likelihood estimation. Ann. Math. Statist. 37 (1966), 755.
MR 0193707