Previous |  Up |  Next

Article

References:
[1] J. Aczél: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966. MR 0208210
[2] D. F. Andrews P. J. Bickel R. R. Hampel P. J. Huber W. H. Rogers, J. W. Tukey: Robust Estimates of Location. Princeton Univ. Press, Princeton, N. J. 1972.
[3] D. E. Boekee: The $D_f$-information of order s. In: Trans. 8th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1979, 55-68. MR 0557706
[4] D. D. Boos: Minimum distance estimators for location and goodness of fit. J. Amer. Statist. Assoc. 76 (1981), 663-670. MR 0629752 | Zbl 0475.62030
[5] I. Csiszár: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. AS (1963), 85-108. MR 0164374
[6] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, (1967) 209-318. MR 0219345
[7] H. Cramér: Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, N. J. 1946. MR 0016588
[8] P. I. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101. MR 0161415 | Zbl 0136.39805
[9] P. I. Huber: Robust statistics: a review. Ann. Math. Statist. 43 (1972), 1041-1067. MR 0314180 | Zbl 0254.62023
[10] S. Kullback, R. A. Leibler: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. MR 0039968 | Zbl 0042.38403
[11] L. Le Cam: On the information contained in additional observations. Ann. Statist. 2 (1974), 630-649. MR 0436400 | Zbl 0286.62004
[12] R. Š. Lipcer, A. N. Širjaev: Statistics of Random Processes. (in Russian). Nauka, Moscow 1974. MR 0431365
[13] P. W. Millar: Robust estimation via minimum distance methods. Z. Wahrsch. verw. Gebiete 55 (1981), 73-89. MR 0606007 | Zbl 0461.62036
[14] A. M. Mood F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics. McGraw-Hill, New York 1963.
[15] J. Neyman: Contributions to the theory of $\chi^2$-test. In: Proc. 1st Berkeley Symp. on Math. Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239-273.
[16] W. C. Parr, W. R. Schucany: Minimum distance and robust estimation. J. Amer. Statist. Assoc. 75 (1980), 616-624. MR 0590691 | Zbl 0481.62031
[17] C. R. Rao: Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531-546. MR 0133192 | Zbl 0156.39802
[18] C. R. Rao: Criteria of estimation in large samples. Sankhya 25 (1963), 189-206. MR 0175225 | Zbl 0268.62011
[19] P. V. Rao, al.: Estimation of shift and center of symmetry based on Kolmogorov-Smirnov statistic. Ann. Statist. 3 (1975), 862-873. MR 0375609
[20] I. Vajda: Limit theorems for total variation of Cartesian product measures. Studia Sci. Math. Hungar. 6 (1971), 317-333. MR 0310950
[21] I. Vajda: On the f-divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223-234. MR 0335163 | Zbl 0248.62001
[22] I. Vajda: $\chi^\alpha$-divergence and generalized Fisher information. In: Trans. 6th Prague Conf. on Inform. Theory, etc., Academia, Prague 1973, 873 - 886. MR 0356302 | Zbl 0297.62003
[23] I. Vajda: Theory of Information and Statistical Decision. (in Slovak), Alfa, Bratislava 1981.
[24] I. Vajda: A new general approach to minimum distance estimation. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. MR 0757729 | Zbl 0552.62016
[25] I. Vajda: Minimum divergence principle in statistical estimation. Statistics and Decisions (submitted). Zbl 0558.62004
[26] M. Vošvrda: On second order efficiency of minimum divergence estimators. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. MR 0757940
[27] J. Wolfowitz: The minimum distance method. Ann. Math. Statist. 28 (1957), 75-88. MR 0088126 | Zbl 0086.35403
[28] P. W. Zehna: Invariance of maximum likelihood estimation. Ann. Math. Statist. 37 (1966), 755. MR 0193707
Partner of
EuDML logo