Previous |  Up |  Next

Article

References:
[1] J. Abaffy, F. Sloboda: Imperfect conjugate gradient algorithms for extended quadratic functions. Numer. Math. 42 (1983), 97-105. MR 0716476 | Zbl 0524.65045
[2] P. Bjorstad, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22 (1979), 93-100. MR 0620386 | Zbl 0401.65041
[3] C. G. Broyden: Quasi-Newton methods and their application to function minimization. Math. Comp. 21 (1967), 368-381. MR 0224273
[4] W. C. Davidon: Variable Metric Method for Minimization. Report ANL-5990 Rev., Argonne National Laboratories, Argonne, IL, 1959.
[5] W. C. Davidon: Conic approximations and collinear scalings for optimizers. SIAM J. Numer. Anal. 17 (1980), 268-281. MR 0567273 | Zbl 0424.65026
[6] E. J. Davison, P. Wong: A robust algorithm that minimizes 1-functions. Automatica 11 (1975), 287-308. MR 0406520
[7] L. C. W. Dixon: Conjugate directions without linear searches. Inst. Math. Appl. 11 (1973), 317-328. MR 0336995 | Zbl 0259.65060
[8] L. C. W. Dixon: Conjugate gradient algorithm: quadratic termination properties without line searches. Inst. Math. Appl. 15 (1975), 9-18. MR 0368429
[9] J. Flachs: On the convergence, invariance, and related aspects of a modification of Huang's algorithm. Optim. Theory Appl. 37 (1982), 315-341. MR 0663527 | Zbl 0462.65042
[10] R. Fletcher, M. J. D. Powell. : A rapidly convergent descent method for minimization. Comput. J. 6 (1963), 163-168. MR 0152116 | Zbl 0132.11603
[11] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. MR 0187375 | Zbl 0132.11701
[12] D. Goldfarb: Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17 (1969), 739-763. MR 0290799 | Zbl 0185.42602
[13] M. R. Hestenes, E. Stiefel: The method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49 (1952), 409-436. MR 0060307
[14] H. Y. Huang: Method of Dual Matrices for Function Minimization. Aero-Astronautic Report No. 88, Rice University, Houston, TX, 1972. Zbl 0254.65044
[15] M. L. Lenard: Accelerated Conjugate Direction Methods for Unconstrained Optimization. Technical Report No. MRC-1591, University of Wisconsin, Madison, WI, 1976.
[16] L. Lukšan: Conjugate gradient algorithms for conic functions. Aplikace matemat. (to appear). MR 0870480
[17] L. Lukšan: Variable metric methods for a class of extended conic functions. Kybernetika 21 (1985), 96-107. MR 0797323
[18] L. Nazareth: A conjugate direction algorithm without line searches. J. Optim. Theory Appl. 23 (1977), 373-387. MR 0525743 | Zbl 0348.65061
[19] J. E. Shirey: Minimization of extended quadratic functions. Numer. Math. 39 (1982), 157-161. MR 0669312 | Zbl 0491.65038
[20] F. Sloboda: An imperfect conjugate gradient algorithm. Aplikace matematiky 27 (1982), 426-434. MR 0678112 | Zbl 0503.65017
[21] F. Sloboda: A generalized conjugate gradient algorithm for minimization. Numer. Math. 35 (1980), 223-230. MR 0585248 | Zbl 0424.65033
[22] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 17 (1980), 84-114. MR 0559465 | Zbl 0428.65040
[23] E. Spedicato: A variable-metric method for function minimization derived from invariancy to nonlinear scaling. J. Optim. Theory Appl. 20 (1976), 315-329. MR 0426854 | Zbl 0316.90066
[24] G. Zoutendijk: Methods of Feasible Directions. Elsevier, Amsterdam 1960. Zbl 0097.35408
Partner of
EuDML logo