[1] D. Aeyels:
Local and global controllability for nonlinear systems. Systems Control Lett. 5 (1984), 19-26.
MR 0768710 |
Zbl 0552.93009
[2] D. Aeyels:
Stabilization of a class of nonlinear systems by a smooth feedback control. Systems Control Lett. 5 (1985), 289-294.
MR 0791542 |
Zbl 0569.93056
[3] P. Brunovský:
A classification of linear controllable systems. Kybernetika 6 (1970), 173-180.
MR 0284247
[4] J. M. Coron L. Praly, A. Teel:
Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques. In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348.
MR 1448452
[5] S. Čelikovský: Topological linearization of nonlinear systems: Application to the nonsmooth stabilization. In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44.
[6] S. Čelikovský:
Global linearization of nonlinear systems -- a survey. In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137.
MR 1364424
[7] S. Čelikovský:
Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150.
MR 1334506
[8] S. Čelikovský: On the relation between nonsmooth linearization of continuous and discrete time systems. In: Proc. of the third ECC'95, Rome 1995, pp. 643-648.
[9] S. Čelikovský, H. Nijmeijer:
Equivalence of nonlinear systems to triangular form: the singular case. Systems Control Lett. 27 (1996), 3, 135-144.
MR 1387097
[10] D. Claude:
Everything you always wanted to know about linearization but were afraid to ask. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226.
MR 0862326 |
Zbl 0607.93027
[11] M. Fliess, F. Messager:
Vers une stabilisation non lineaire discontinue. In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787.
Zbl 0716.93046
[12] B. Jakubczyk, W. Respondek:
On linearization of control systems. Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522.
MR 0629027 |
Zbl 0489.93023
[13] A. Isidori:
Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin 1989.
MR 1229759
[14] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems. IEEE Control Systems Magazine 1993, 47-57.
[16] M. Kawski:
Stabilization of nonlinear systems in the plane. Systems Control Lett. 12 (1989), 169-175.
MR 0985567 |
Zbl 0666.93103
[17] H. Nijmeijer, A. J. van der Schaft:
Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin 1990.
MR 1047663 |
Zbl 0701.93001
[18] C. Simoes H. Nijmeijer, J. Tsinias:
Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems. Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear.
MR 1388127
[19] E. D. Sontag:
Feedback stabilization of nonlinear systems. In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81.
MR 1115377 |
Zbl 0735.93063
[20] W. Respondek:
Geometric methods in linearization of control systems. Banach Center Publ. 14 (1985), 453-467.
MR 0851243 |
Zbl 0573.93028
[21] W. Respondek:
Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283.
MR 0862329 |
Zbl 0605.93033
[22] L. A. Zadeh, C. A. Desoer: Linear Systems Theory. McGraw-Hill, New York 1963.