[1] M. Behara: Additive and Nonadditive Measures of Entropy with Applications. Mc Master University report, 1978.
[2] M. Behara P. Nath:
Additive and nonadditive entropies of finite measurable partitions. Probability and Information Theory, V2, Springer-Verlag 1973, V296, 102-138.
MR 0379019
[3] T. K. Chaundy J. B. McLeod:
On a functional equation. Edin. Math. Notes 43 (1960), 7-8.
MR 0151748
[4] B. Forte C. A. Bartone:
Non-symmetric entropies with the branching property. Utilitas Math. V12 (1977), 3-23.
MR 0484758
[5] J. Havrda F. Charvát:
Quantification method of classification process. Kybernetika 3 (1967), 30-35.
MR 0209067
[6] PL. Kannappan:
On generalization of some measures in information theory. Glasnik Mat. 29 (1974), 81-93.
MR 0363671
[7] PL. Kannappan:
On some functional equations from additive and nonadditive measures - I. Proc. Edin. Math. Soc. 23 (1980), 145 - 150.
MR 0597119
[8] PL. Kannappan:
On some functional equations from additive and nonadditive measures - II. In: Advances in Communication (Vol. I of Info II; D. G. Lainitis, N. S. Tzannes, eds.). D. Reidel, Dordrecht - Boston - London 1980, 45 - 50.
MR 0615934 |
Zbl 0479.39001
[9] PL. Kannappan:
On a generalization of sum form functional equation - III. Demonstratio Mat. V 13 (1980), 749 - 754.
MR 0598718 |
Zbl 0468.39005
[10] C. T. Ng:
Representation of measures of information with the branching property. Information and Control 25 (1974), 45-56.
MR 0342273
[11] C. E. Shannon:
A mathematical theory of communication. Bell System Tech. J. 27 (1948), 378-423 and 623-656.
MR 0026286 |
Zbl 1154.94303
[12] E. Vincze:
Eine allgemeinere Methode in der Theorie der Funktional Gleichungen - I. Publ. Math. Debrecen 9 (1962), 149-163.
MR 0142936