Previous |  Up |  Next

Article

References:
[1] R. Albert: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972. MR 0331659 | Zbl 0253.62030
[2] A. Bryson, Ho-Yu-Chi: Applied Optimal Control. Ginn and Co., Waltham, Mass. 1969.
[3] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Scalar Models. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1983), No. 4.
[4] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Multidimensional models. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1984), No. 4.
[5] P. D. Crutko: Invesion of Direct Lyapunov Method in Control Problems for Dynamical Systems. Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1989), No. 3.
[6] D. P. Dee: Simplification of the Kalman filter for meteorological data assimilation. Quart. J. Roy. Meteorol. Soc. 117 (1991), 365-384.
[7] R. J. Fitzgerald: Divergence of the Kalman filter. IEEE Trans. Automat. Control AC-16 (1971), 736-747.
[8] M. Ghil, P. Malanotte-Rizzoli: Data assimilation in meteorology and oceanography. Adv. in Geophysics 33 (1991), 141-266.
[9] R. E. Griffin, A. P. Sage: Sensitivity analysis of discrete filtering and smoothing algorithms. In: AIAA Guidance, Control and Flight Dynamics Conf., Pasadena, California 1988, Paper No. 68-824.
[10] H. Heffes: The effect of erroneous models on the Kalman filter response. IEEE Trans. Automat. Control AC-11 (1966), 541-543.
[11] H. S. Hoang P. De Mey, O. Talagrand: A simple algorithm of stochastic approximation type for system parameter and state estimation. In: 33rd IEEE CDC, Florida 1994, pp. 447-452.
[12] H. S. Hoang R. Baraille O. Talagrand P. De Mey, X. Carton: On the design of a stable adaptive filter. In: Proc. 35th IEEE CDC, Kobe 1996, Vol. 3, pp. 3543-3544.
[13] H. S. Hoang P. De Mey O. Talagrand, R. Baraille: A new reduced-order adaptive filter for high dimensional systems. In: Proc. of IFAC Internat. Symp. Adaptive Systems in Control and Signal Processing (Cs. Banyasz, ed.), Budapest 1995, pp. 153-158. Also: Automatica 33 (1997), 8, 1475-1498. MR 1470055
[14] H. S. Hoang, T. L. Nguyen: Time-stable non-linear filters: Stochastic Lyapunov function approach. In: Recent Advances in Mathematical Theory of Systems and Control, Networks and Signal Processing (H. Kimura and S. Kodama, eds.), Mita Press, Tokyo 1992, pp. 653-658. MR 1197987
[15] S. Hoang L. Nguyen R. Baraille, O. Talagrand: Approximation approach for nonlinear filtering problem with time dependent noises. Part I: Conditionally optimal filter in the minimum mean square sense. Kybernetika 33 (1997), 4, 409-425. MR 1471386
[16] H. S. Hoang, O. Talagrand: On regularization approach to parameter estimation and application to design of stable filters. In: IFAC 12th World Congress, V-4, Sydney 1993, pp. 213-218.
[17] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. Zbl 0203.50101
[18] R. E. Kalman, R. S. Bucy: New results in linear filtering and prediction theory. In: Trans. ASME, J. Basic Eng., 1961, 83D, pp. 95-108. MR 0234760
[19] R. S. Liptser, A. N. Shiryaev: Statistics of Random Processes. Nauka, Moscow 1974. MR 0431365
[20] L. Ljung, T. Sodestrom: Theory and Practice of Recursive Identification. Academic Press, New York 1983. MR 0719192
[21] R. K. Mehra: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Automat. Control AC-15 (1970), 175-184. MR 0274179
[22] V. I. Meleshko, S. S. Sekt: Regularized estimates in problems with singular variance matrices. Automat. Remote Control 3 (1988), 293-297. MR 0943891 | Zbl 0657.93061
[23] T. L. Nguyen, H. S. Hoang: On solution of ill-posed optimal linear filtering problem with correlated noises. Automat. Remote Control 4 (1983), 1, 453-466. MR 0156733
[24] V. S. Pugachev: Recursive estimation of variables and characteristics in the stochastic systems described by the difference equations. Dokl. Acad. Nauk USSR 243 (1976), 5. MR 0514777
[25] S. Safonov, M. Athans: On stability theory. In: Proc. IEEE CDC, San Diego 1979. MR 0551861 | Zbl 0428.93050
[26] G. Sewell: The numerical Solution of Ordinary and Partial Differential Equations. Academic Press, New York 1988. MR 0968668 | Zbl 0657.65003
[27] L. M. Silverman: Discrete Riccati equations: Algorithms, asymptotic properties and system theory interpretation. In: Filtering and Stochastic Control in Dynamical Systems (C. T. Leondes, ed.), Mir, Moscow 1980.
[28] H. W. Sorenson: On the error behavior in linear minimum variance estimation problems. IEEE Trans. Automat. Control AC-12 (1967), 557-562.
[29] O. Talagrand, P. Courtier: Variational assimilation of meteorological observations with the Adjoint vorticity equations. I. Theory. Quart. J. Roy. Meteorol. Soc. 113 (1987), 1311-1328.
[30] J. Verron: Nudging satellite altimetry data into quasi-geostrophic models. J. Geophys. Research 97 (1992), 7479-7491.
[31] V. I. Zubov: On theory of analytic design of regulators. Automat. Remote Control (1963), No. 8.
Partner of
EuDML logo