Previous |  Up |  Next

Article

References:
[1] H. T. Banks D. S. Gilliam, V. I. Shubov: Well-Posedness for a One Dimensional Nonlinear Beam. Technical Report No. CRSC-TR94-18, NCSU, 1994; Computation and Control IV, K. Bowers and J. Lund, eds., Birkhäuser, Boston 1995, pp. 1-21. MR 1349580
[2] H. T. Banks D. S. Gilliam, V. I. Shubov: Global Solvability for Damped Abstract Nonlinear Hyperbolic Systems. Technical Report No. CRSC-TR95-25, NCSU, 1995; Differential and Integral Equations, to appear. MR 1424814
[3] H. T. Banks K. Ito, Y. Wang: Well Posedness for Damped Second Order Systems with Unbounded Input Operators. Technical Report No. CRSC-TR93-10, NCSU, 1993; Differential and Integral Equations 8 (1995), 587-606. MR 1306577
[4] H. T. Banks, N. J. Lybeck: A Nonlinear Lax-Milgram Lemma Arising in the Modeling of Elastomers. Technical Report No. CRSC-TR95-37, NCSU, 1995; Nonlinear Partial Differential Equations, Collège de France Seminar, Vol. 13, 1996, to appear. MR 1773073
[5] H. T. Banks N. Medhin, Y. Zhang: A Mathematical Framework for Curved Active Constrained Layer Structures: Well-posedness and Approximation. Technical Report No. CRSC-TR95-32, NCSU, 1995; Numer. Funct. Anal. Optim., to appear. MR 1391870
[6] H. T. Banks, J. G. Wade: Weak Tau approximations for distributed parameter systems in inverse problems. Numer. Funct. Anal. Optim. 12 (1991), 1-31. MR 1125044 | Zbl 0744.35061
[7] F. E. Browder: Nonlinear monotone operators and convex sets in Banach spaces. Bull. Amer. Math. Soc. 71 (1965), 780-785. MR 0180882 | Zbl 0138.39902
[8] D. J. Charlton J. Yang, K. K. Teh: A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry \& Technology 67 (1994), 481-503.
[9] R. M. Christensen: Theory of Viscoelasticity. Academic Press, New York 1982.
[10] R. W. Clough, J. Penzien: Dynamics of Structures. McGraw-Hill, New York 1975. Zbl 0357.73068
[11] R. Dautray, J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods. Springer-Verlag, Berlin--Heidelberg 1988. MR 0969367
[12] J. D. Ferry: Viscoelastic Properties of Polymers. John Wiley \& Sons, New York 1980.
[13] G. J. Minty: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29 (1962), 341-346. MR 0169064 | Zbl 0111.31202
[14] A. C. Pipkin: Lectures on Viscoelasticity Theory. Springer-Verlag, Berlin--Heidelberg 1972. Zbl 0237.73022
[15] M. Renardy W. J. Hrusa, J. A. Nohel: Mathematical Problems in Viscoelasticity. Pittman Monograph, Longman/J. Wiley \& Sons, 1987. MR 0919738
[16] R. S. Rivlin: Large elastic deformations of isotropic materials I, II, III. Philos. Trans. Roy. Soc. London Ser. A 240 (1948), 459-490, 491-508, 509-525.
[17] I. H. Shames, F. A. Cozzarelli: Elastic and Inelastic Stress Analysis. Prentice Hall, Englewood Cliffs, N. J. 1992. Zbl 0765.73001
[18] S. Timoshenko D. H. Young, W. Weaver, Jr.: Vibration Problems in Engineering. J. Wiley \& Sons, New York 1974.
[19] L. R. G. Treloar: The Physics of Rubber Elasticity. Clarendon Press, Oxford 1975.
[20] I. M. Ward: Mechanical Properties of Solid Polymers. John Wiley \& Sons, New York 1983.
[21] J. Wloka: Partial Differential Equations. Cambridge University Press, Cambridge 1987. MR 0895589 | Zbl 0623.35006
Partner of
EuDML logo