[1] D. J. Aplevich:
Minimal representation of implicit linear systems. Automatica 21 (1985), 259-269.
MR 0793061
[2] D. Bernard:
On singular implicit linear dynamical systems. SIAM J. Control Optim. 29 (1989), 612-633.
MR 0667644
[3] H. Eliopoulou: A Matrix Pencil Approach for the Study of Geometry and Feedback Invariants of Singular Systems. PhD Thesis, Control Eng. Centre, City University, London 1994.
[4] H. Eliopoulou, N. Karcanias:
Geometric properties of the singular Segre characteristic at infinity of a pencil. In: Recent Advances in Mathematical Theory of Systems, Control Networks and Signal Processing II - Proceedings of the International Symposium MTNS 91, Tokyo, pp. 109-114.
MR 1198007
[5] H. Eliopoulou, N. Karcanias: Toeplitz matrix characterisation and computation of the fundamental subspaces of singular systems. In: Proceedings of Symposium of Implicit and Nonlinear Systems SINS'92, The Aut. & Robotics Res. Inst., University of Texas at Arlington 1992, pp. 216-221.
[6] H. Eliopoulou, N. Karcanias: On the study of the chains and spaces related to the Kronecker invariants via their generators. Part II: Elementary divisors. (submitted for publication).
[7] F. R. Gantmacher:
Theory of Matrices. Chelsea, New York 1959.
Zbl 0085.01001
[8] S. Jaffe, N. Karcanias:
Matrix pencil characterisation of almost (A, B) invariant subspaces: A classification of geometric concepts. Internat. J. Control 33 (1981), 51-93.
MR 0607261
[9] G. Kalogeropoulos: Matrix Pencils and Linear System Theory. PhD Thesis, Control Eng. Centre, City University, London 1985.
[10] N. Karcanias:
Proper invariant realisation of singular system problems. IEEE Trans. Automat. Control AC-35 (1990), 2, 230-233.
MR 1038428
[11] N. Karcanias:
Minimal bases of matrix pencils: Algebraic, Toeplitz structure and geometric properties. Linear Algebra Appl. 205-206 (1994), 205-206.
MR 1276843 |
Zbl 0804.15008
[12] N. Karcanias:
The selection of input and output schemes for a system and the model projection problems. Kybernetika 30 (1994), 585-596.
MR 1323661 |
Zbl 0827.93006
[13] N. Karcanias, G. Kalogeropoulos:
Geometric theory and feedback invariants of generalised linear systems: A matrix pencil approach. Circuits Systems Signal Process. 8 (1989), 375-397.
MR 1015178
[14] N. Karcanias, H. Eliopoulou: On the study of the chains and spaces related to the Kronecker invariants via their generators. Part I: Minimal bases for matrix pencils. (submitted for publication).
[15] N. Karcanias, G. Hayton:
Generalised autonomouc dynamical systems, algebraic duality and geometric theory. In: Proc. IFAC VIII Trennial World Congress, Kyoto 1981.
MR 0735816
[16] N. Karcanias, D. Vafiadis:
On the cover problems of geometric theory. Kybernetika 29 (1993), 547-562.
MR 1264886 |
Zbl 0821.93026
[17] F. Lewis:
A tutorial on the geometric analysis of linear time invariant implicit systems. Automatica 28 (1992), 119-138.
MR 1144115 |
Zbl 0745.93033
[18] J. J. Loiseau:
Some geometric considerations about the Kronecker normal form. Internat. J. Control 42 (1985), 6, 1411-1431.
MR 0818345 |
Zbl 0609.93014
[19] K. Ozcaldiran: Control of Descriptor Systems. PhD Thesis, School of Elec. Eng., Georgia Institute of Techn., Atlanta 1985.
[20] K. Ozcaldiran:
A geometric characterisation of reachable and controllable subspaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 1, 37-48.
MR 0893726
[21] K. Ozcaldiran, F. L. Lewis:
Generalised reachability subspaces for singular systems. SIAM J. Control Optim. 26 (1989), 495-510.
MR 0993283
[22] H. L. Trentelman:
Almost Invariant Subspaces and High Gain Feedback. PhD Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology 1985.
MR 0879423
[23] J. C. Willems:
Almost invariant subspaces: An approach to high gain feedback design. IEEE Trans. Automat. Control AC-26 (1981), 235-252; AC-27 (1982), 1071-1085.
Zbl 0463.93020
[24] W. M. Wonham:
Linear Multivariable Control: A Geometric Approach. Second edition. Springer-Verlag, New York 1979.
MR 0569358 |
Zbl 0424.93001