Previous |  Up |  Next

Article

References:
[1] B. D. O. Anderson W. A. Coppel, D. J. Cullen: Strong system equivalence (I). J. Austral. Math. Soc. Ser. B 27 (1985), 194-222. MR 0804857
[2] O. H. Bosgra, A. J. J. Van Der Weiden: Realisations in generalised state-space form for polynomial system matrices, and the defìnition of poles, zeros and decoupling zeros at infinity. Internat. J. Control 33 (1981), 393-411. MR 0610894
[3] G. E. Hayton A. B. Walker, A. C. Pugh: Infinite frequency structure preserving transformations for general polynomial system matrices. Internat. J. Control 52 (1990), 1-14. MR 1061020
[4] N. P. Karampetakis, A. I. G. Vardulakis: Matrix fractions and full system equivalence. IMA J. Math. Control Inform. 9 (1992), 147-160. MR 1193789 | Zbl 0777.93052
[5] N. P. Karampetakis, A. I. G. Vardulakis: Generalized state-space system matrix equivalents of a Rosenbrock system matrix. IMA J. Math. Control Inform. 10 (1993), 323-344. MR 1376225 | Zbl 0807.93009
[6] T. Shaohua, J. Vandewalle: A singular system realisation for arbitrary matrix fraction descriptions. In: ISCAS'88, pp. 615-618.
[7] A. I. G. Vardulakis: Linear Multivariable Control, Algebraic Analysis and Synthesis Methods. Nelson-Wiley, London 1991. MR 1104222 | Zbl 0751.93002
[8] A. I. G. Vardulakis: On the transformation of a polynomial matrix model of a linear multivariable system to generalised state space form. In: Proceedings of the З0th IEEE Conference on Decision and Control, Brighton 1991, U.K., pp. 11-13.
[9] G. C. Verghese: Infinite Frequency Behavior in Generalized Dynamical Systems. PҺ.D. Dissertation, Stanford Univ., Stanford, CA 1978.
[10] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. MR 0359881 | Zbl 0291.93002
Partner of
EuDML logo