[1] G. Basile G. Marro:
Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 306-315.
MR 0246661
[2] S. P. Bhattacharyya:
Disturbance rejection in linear systems. Internat. J. Systems Sci. 5 (1974), 633-637.
MR 0363580 |
Zbl 0295.93003
[3] M. D. Di Benedetto J. W. Grizzle C. H. Moog:
Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658-672.
MR 0993292
[4] J. W. Grizzle:
Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem. IEEE Trans. Automat. Control AC-30 (1985), 868-874.
MR 0799480
[5] J. W. Grizzle:
A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim. 31 (1993), 1026-1044.
MR 1227545 |
Zbl 0785.93036
[6] R. M. Hirschorn:
Invertibility of multivariable nonlinear control systems. IEEE Trans. Automat. Control AC-24 (1979), 1-19.
MR 0566444 |
Zbl 0427.93020
[7] R. M. Hirschorn:
$(A,B)$-invariant distributions and disturbance decoupling of nonlinear systems. SIAM J. Control Optim. 19 (1981), 1-19.
MR 0603076 |
Zbl 0474.93036
[8] H. J. C. Huijberts: Dynamic Feedback in Nonlinear Synthesis Problems. PҺ.D. Thesis, University of Twente, Enschede 1991.
[9] H. J. C. Huijberts H. Nijmeijer: Strong dynamic input-output decoupling: From linearity to nonlinearity. In: Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Bordeaux 1992.
[10] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen:
Dynamic disturbance decoupling for nonlinear systems. SIAM J. Control Optim. 30 (1992), 336-349.
MR 1149072
[11] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen:
Minimality of dynamic input-output decoupling for nonlinear systems. Systems Control Lett. 18 (1992), 435-443.
MR 1169289
[12] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen:
Dynamic disturbance decoupling for nonlinear systems: The nonsquare and noninvertible case. In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 243-252.
MR 1131998
[13] A. Ilchmann:
Contributions to Time-Varying Linear Control Systems. Verlag an der Lottbek, Ammersbek 1989.
Zbl 0693.93048
[14] A. Ilchmann:
Time-varying linear control systems: A geometric approach. IMA J. Math. Control Inform. 6 (1989), 411-440.
MR 1036156 |
Zbl 0696.93017
[15] A. Isidori A. J. Krener C. Gori-Giorgi S. Monaco:
Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Control AC-26 (1981), 331-345.
MR 0613540
[16] T. Kaczorek: Linear Control Systems II. Research Studies Press Ltd., Taunton 1993.
[17] Ü. Kotta:
Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and non-invertible case. In: Proc. Estonian Acad. Sci. Phys. Math. 41 (1991), 14-22.
MR 1167108
[18] Ü. Kotta H. Nijmeijer: Dynamic Disturbance Decoupling for Discrete-Time Nonlinear Systems. Memorandum No. 913, University of Twente, Enschede 1990.
[19] W. C. A. Maas H. Nijmeijer:
Dynamic path controllability in economic models: from linearity to nonlinearity. J. Econom. Dynamics Control 18 (1994), 781-805.
MR 1277285
[20] S. Monaco D. Normand-Cyrot:
Invariant distributions for discrete time nonlinear systems. Systems Control Lett. 5 (1984), 191-196.
MR 0777852
[21] H. Nijmeijer:
Local (dynamic) input-output decoupling of discrete time nonlinear systems. IMA J. Math. Control Inform. 4 (1987), 237-250.
MR 0910195 |
Zbl 0631.93033
[22] H. Nijmeijer A. van der Schaft:
Nonlinear Dynamical Control Systems. Springer Verlag, New Yoгk 1990.
MR 1047663
[23] W. Respondek:
Disturbance decoupling via dynamic feedback. In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 347-357.
MR 1132008 |
Zbl 0801.93023
[24] L. M. Silverman:
Inversion of multivariable linear systems. IEEE Trans. Automat. Contr. AC-14 (1969), 270-276.
MR 0267927
[25] S. N. Singh:
Generalised decoupled-control synthesis for nonlinear systems. IEE Proceedings 128(1981), 157-161.
MR 0622684
[26] W. M. Wonham A. S. Morse:
Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM J. Control Optim. 8 (1970), 1-18.
MR 0270771