Previous |  Up |  Next

Article

References:
[1] N. Balakrishnan (ed.): Handbook of the Logistic Distribution. Marcel Dekker, New York 1992. MR 1174324 | Zbl 0794.62001
[2] N. Balakrishnan, A. C. Cohen: Order Statistics and Inference: Estimation Methods. Academic Press, Boston 1990. MR 1084812
[3] L. N. Bolshev, M. S. Nikulin: One solution of the problem of homogeneity. Serdica 1 (1975), 104-109. MR 0403056
[4] H. Chernoff, E. L. Lehmann: The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit. Ann. Math. Statist. 25 (1954), 579-586. MR 0065109
[5] H. Cramer: Mathematical Methods of Statistics. Princeton University Press, Princeton, N. J. 1946. MR 0016588 | Zbl 0063.01014
[6] R. C. Dahiya, J. Gurland: Pearson chi-square test of fit with random intervals. Biometrika 59 (1972), 1, 147-153. MR 0314191
[7] F. C. Drost: Asymptotics for generalised chi-square goodness-of-fit tests. CWI Tract 48, Centre for Mathematics and Computer Sciences, Amsterdam 1988. MR 0948670
[8] R. M. Dudley: Probabilities and metrics-convergence of laws on metric spaces with a view to statistical testing. Lecture Notes 45, Aarhus Universitet, Aarhus 1976. MR 0488202 | Zbl 0355.60004
[9] K. O. Dzhaparidze, M. S. Nikulin: On a modification of the standard statistic of Pearson. Theory Prob. Appl. 19 (1974), 4, 851-852.
[10] K. O. Dzhaparidze, M. S. Nikulin: On evaluation of statistics of chi-square type tests. In: Problems of the Theory of Probability Distributions 12 (1992), Nauka, St. Petersburg, 59-90.
[11] R. A. Fisher: On a property connecting the $\chi^2$ measure of discrepancy with the method of maximum likelihood. Atti de Congresso Internazionale di Mathematici, Bologna, 6 (1928), 94-100.
[12] H. L. Harter, A. H. Moore: Maximum-likelihood estimation, from censored samples, of the parameters of a logistic distribution. J. Amer. Statist. Assoc. 62 (1967), 675-684. MR 0212922 | Zbl 0149.15002
[13] L. Le Cam C. Mahan, A. Singh: An extension of a theorem of H. Chernoff and E. L. Lehmann. In: Recent Advances in Statistics. Academic Press, New York 1983, pp. 303-332. MR 0736539
[14] D. S. Moore, M. C. Spruill: Unified large-sample theory of general chi-squared statistics for tests of fit. Ann. of Statist. 3 (1975), 599-616. MR 0375569 | Zbl 0322.62047
[15] M. S. Nikulin: Chi-square test for normality. In: Proceedings of International Vilnius Conference on Probability Theory and Mathematical Statistics Vol. 2, 1973, pp. 119-122.
[16] M. S. Nikulin: Chi-square test for continuous distributions with shift and scale parameters. Theory Probab. Appl. 18 (1973), 3, 559-568. MR 0359166 | Zbl 0302.62022
[17] M. S. Nikulin: Chi-square test for continuous distributions. Theory Probab. Appl. 18 (1973), 3, 638-639. MR 0359166 | Zbl 0302.62022
[18] M. S. Nikulin, V. C. Voinov: A chi-square goodness-of-fit test for exponential distribution of the first order. Lecture Notes in Math. 1312, Springer-Verlag, Berlin 1989, pp. 239-258. MR 1041356
[19] C. R. Rao: Linear Statistical Inference and its Applications. J. Wiley, New York 1965. MR 0221616 | Zbl 0137.36203
[20] K. C. Rao, D. S. Robson: A chi-squared statistic for goodness-of-fit tests within the exponential family. Commun. Statist. 3 (1974), 1139-1153. MR 0381125
[21] V. C Voinov, M. S. Nikulin: Unbiased Estimators and their Applications. Part I: Univariate case. Kluwer Academic Publisher, Dordrecht 1993. MR 1472739
[22] S. Zacks: The Theory of Statistical Inference. Wiley, New York 1979. MR 0420923
Partner of
EuDML logo