[1] J. A. Bather:
Stochastic approximation: A generalisation of the Robbins-Monro procedure. In: Proc. Fourth Prague Symp. Asymptotic Statistics, Charles Univ. Prague, August 29-September 2, 1988 (P. Mandl and M. Hušková, eds.), Charles Univ., Prague 1989, pp. 13-27.
MR 1051424
[2] J. R. Blum:
Approximation methods which converge with probability one. Ann. Math. Statist. 25 (1954), 382-386.
MR 0062399 |
Zbl 0055.37806
[3] K. L. Chung:
On a stochastic approximation method. Ann. Math. Statist. 25 (1954), 463-483.
MR 0064365 |
Zbl 0059.13203
[4] V. Fabian:
On asymptotic normality in stochastic approximation. Ann. Math. Statist. 39 (1968), 1327-1332.
MR 0231429 |
Zbl 0176.48402
[5] G. Kersting:
Almost sure approximation of the Robbins-Monro process by sums of independent random variables. Ann. Probab. 5 (1977), 954-965.
MR 0494741 |
Zbl 0374.62082
[6] L. Ljung:
Strong convergence of a stochastic approximation algorithm. Ann. Statist. 6 (1978), 680-696.
MR 0464516 |
Zbl 0402.62060
[7] B. T. Polyak:
New method of stochastic approximation type. Automat. Remote Control 51 (1990), 937-946.
MR 1071220 |
Zbl 0737.93080
[8] H. Robbins, S. Monro:
A stochastic approximation method. Ann. Math. Statist. 22 (1951), 400-407.
MR 0042668 |
Zbl 0054.05901
[9] D. Ruppert:
Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise. Ann. Probab. 10 (1982), 178-187.
MR 0637384 |
Zbl 0485.62083
[10] D. Ruppert: Efficient Estimators from a Slowly Convergent Robbins-Monro Process. Technical Report No. 781, School of Operations Research and Industrial Engineering, Cornell Univ. Ithaca 1988.
[11] D. Ruppert:
Stochastic approximation. In: Handbook of Sequential Analysis. (B. K. Ghosh and P. K. Sen, eds.), Marcel Dekker, New York 1991, pp. 503-529.
MR 1174318
[12] J. Sacks:
Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist. 29 (1958), 373-405.
MR 0098427 |
Zbl 0229.62010
[13] R. Schwabe:
Strong representation of an adaptive stochastic approximation procedure. Stochastic Process. Appl. 23 (1986), 115-130.
MR 0866290 |
Zbl 0614.62107
[14] R. Schwabe:
Stability results for smoothed stochastic approximation procedures. Z. Angew. Math. Mech. 73 (1993), 639-643.
MR 1237850 |
Zbl 0793.65110
[15] J. H. Venter:
An extension of the Robbins-Monro procedure. Ann. Math. Statist. 38 (1967), 181-190.
MR 0205396 |
Zbl 0158.36901
[16] H. Walk: Foundations of stochastic approximation. In: Stochastic Approximation and Optimization of Random Systems, DMV Seminar Blauberen, May 28-June 4, 1989 (L. Jung, G. Pflug and H. Walk, eds.), DMV Seminar, Vol. 17, Birkhäuser, Basel 1992, pp. 1-51.