Previous |  Up |  Next

Article

References:
[1] J. A. Bather: Stochastic approximation: A generalisation of the Robbins-Monro procedure. In: Proc. Fourth Prague Symp. Asymptotic Statistics, Charles Univ. Prague, August 29-September 2, 1988 (P. Mandl and M. Hušková, eds.), Charles Univ., Prague 1989, pp. 13-27. MR 1051424
[2] J. R. Blum: Approximation methods which converge with probability one. Ann. Math. Statist. 25 (1954), 382-386. MR 0062399 | Zbl 0055.37806
[3] K. L. Chung: On a stochastic approximation method. Ann. Math. Statist. 25 (1954), 463-483. MR 0064365 | Zbl 0059.13203
[4] V. Fabian: On asymptotic normality in stochastic approximation. Ann. Math. Statist. 39 (1968), 1327-1332. MR 0231429 | Zbl 0176.48402
[5] G. Kersting: Almost sure approximation of the Robbins-Monro process by sums of independent random variables. Ann. Probab. 5 (1977), 954-965. MR 0494741 | Zbl 0374.62082
[6] L. Ljung: Strong convergence of a stochastic approximation algorithm. Ann. Statist. 6 (1978), 680-696. MR 0464516 | Zbl 0402.62060
[7] B. T. Polyak: New method of stochastic approximation type. Automat. Remote Control 51 (1990), 937-946. MR 1071220 | Zbl 0737.93080
[8] H. Robbins, S. Monro: A stochastic approximation method. Ann. Math. Statist. 22 (1951), 400-407. MR 0042668 | Zbl 0054.05901
[9] D. Ruppert: Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise. Ann. Probab. 10 (1982), 178-187. MR 0637384 | Zbl 0485.62083
[10] D. Ruppert: Efficient Estimators from a Slowly Convergent Robbins-Monro Process. Technical Report No. 781, School of Operations Research and Industrial Engineering, Cornell Univ. Ithaca 1988.
[11] D. Ruppert: Stochastic approximation. In: Handbook of Sequential Analysis. (B. K. Ghosh and P. K. Sen, eds.), Marcel Dekker, New York 1991, pp. 503-529. MR 1174318
[12] J. Sacks: Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist. 29 (1958), 373-405. MR 0098427 | Zbl 0229.62010
[13] R. Schwabe: Strong representation of an adaptive stochastic approximation procedure. Stochastic Process. Appl. 23 (1986), 115-130. MR 0866290 | Zbl 0614.62107
[14] R. Schwabe: Stability results for smoothed stochastic approximation procedures. Z. Angew. Math. Mech. 73 (1993), 639-643. MR 1237850 | Zbl 0793.65110
[15] J. H. Venter: An extension of the Robbins-Monro procedure. Ann. Math. Statist. 38 (1967), 181-190. MR 0205396 | Zbl 0158.36901
[16] H. Walk: Foundations of stochastic approximation. In: Stochastic Approximation and Optimization of Random Systems, DMV Seminar Blauberen, May 28-June 4, 1989 (L. Jung, G. Pflug and H. Walk, eds.), DMV Seminar, Vol. 17, Birkhäuser, Basel 1992, pp. 1-51.
Partner of
EuDML logo