Previous |  Up |  Next

Article

References:
[1] W. Alt: The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990), 201-224. MR 1068833 | Zbl 0694.49022
[2] W. Alt: Parametric programming with applications to optimal control and sequential quadratic programming. Bayreuther Mathematische Schriften 35 (1991), 1-37. MR 1104518
[3] J.-P. Aubin, I. Ekeland: Applied Nonlinear Analysis. J. Wiley, New York 1984. MR 0749753 | Zbl 0641.47066
[4] J.-P. Aubin, H. Frankowska: Set-valued Analysis. Birkhauser, Boston 1990. MR 1048347 | Zbl 0713.49021
[5] F. E. Browder: Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. Amer. Math. Soc, Providence, Rhode Island 1976. MR 0405188 | Zbl 0327.47022
[6] S. Dafermos: Sensitivity analysis in variational inequalities. Math. Oper. Res. IS (1988), 421-434. MR 0961802 | Zbl 0674.49007
[7] A. V. Fiacco: Sensitivity analysis for nonlinear programming using penalty methods. Math. Programming 10 (1976), 287-311. MR 0434444 | Zbl 0357.90064
[8] A. V. Fiacco: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York - London 1983. MR 0721641 | Zbl 0543.90075
[9] A. D. Ioffe, V. M. Tihomirov: Theory of Extremal Problems. North-Holland, Amsterdam - New York - Oxford 1979. MR 0528295 | Zbl 0407.90051
[10] K. Ito, K. Kunisch: Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation. Preprint, 1989. MR 1178394
[11] G. Kassay, I. Kolumban: Implicit-function theorems for monotone mappings. Research Seminar on Mathematical Analysis, Babes-Bolyai University, Preprint Nr. 6 (1988), 7-24. MR 0989594 | Zbl 0664.46045
[12] G. Kassay, I. Kolumban: Implicit functions and variational inequalities for monotone mappings. Research Seminar on Mathematical Analysis, Babes-Bolyai University, Preprint Nr.7 (1989), 79-92. MR 1043190 | Zbl 0724.47027
[13] K. Malanowski: Second-order conditions and constraint qualifications in stability and sensitivity analysis of solutions to optimization problems in Hilbert spaces. Appl. Math. Optim. (to appear). MR 1133252 | Zbl 0756.90093
[14] G. Minty: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29 (1962), 341-346. MR 0169064
[15] S. M. Robinson: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43-62. MR 0561153 | Zbl 0437.90094
[16] S. M. Robinson: Generalized equations. In: Mathematical Programming - The State of the Art (A. Bachem, M. Grotschel, B. Korte eds.), Springer-Verlag, Berlin 1983, pp. 346-368. MR 0717407 | Zbl 0554.34007
[17] S. M. Robinson: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16 (1991), 292-309. MR 1106803 | Zbl 0746.46039
[18] R. T. Rockafellar: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149 (1970), 75-88. MR 0282272 | Zbl 0222.47017
Partner of
EuDML logo