Previous |  Up |  Next

Article

References:
[1] A. C. Antoulas: New results on the algebraic theory of linear systems: the solution of cover problems. Linear Algebra Appl. 50 (1983), 1-43. MR 0699558
[2] E. Emre L. M. Silverman, K. Glover: Generalised dynamic covers for linear systems with applications to deterministic identification problems. IEEE Trans. Automat. Control AC-22 (1977), 26-35. MR 0444165
[3] S. Jaffe, N. Karcanias: Matrix pencil characterisation of almost (A, B)-invariant subspaces: a classification of geometric concepts. Internat. J. Control 33(1981), 51-93. MR 0607261
[4] N. Karcanias: Matrix pencil approach to geometric system theory. Proc. IEE 126 (1990), 585-590. MR 0536439
[5] N. Karcanias: The global role of instrumentation in systems design and control. The concise Encyclopedia of Measurement and Instrumentation, Pergamon Press, to appear.
[6] N. Karcanias: Proper invariant realisations of singular system problems. IEEE Trans. Automat. Control AC-35 (1990), 230-233. MR 1038428
[7] N. Karcanias, B. Kouvaritakis: The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach. Internat. J. Control 30 (1979), 395-415. MR 0543563 | Zbl 0434.93018
[8] N. Karcanias, C. Giannacopoulos: Necessary and sufficient conditions for zero assignment by constant squaring down. Linear Algebra Appl., Special issue on control theory 122/123/124 (1989), 415-446. MR 1019995
[9] N. Karcanias, G. Kalogeropoulos: Geometric theory and feedback invariants of generalized linear systems: a matrix pencil approach. Circuits Systems Signal Process. 5 (1989), 3, 375-397. MR 1015178 | Zbl 0689.93016
[10] A. S. Morse: Minimal solutions to transfer matrix equations. IEEE Trans. Automat. Control AC-18(1973), 346-354. MR 0395957
[11] R. C. Thompson: Interlacing inequalities for invariant factors. Linear Algebra Appl. 24 (1979), 1-31. MR 0524823 | Zbl 0395.15003
[12] J. C. Willems: Almost invariant subspaces: an approach to high gain feedback design - Part I, almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235-252. MR 0609263
[13] W. M. Wonham: Linear Multivariate Control: A Geometric Approach. Springer-Verlag, New York 1979. MR 0522868
[14] W. M. Wonham, A. S. Morse: Feedback invariants for linear multivariable systems. Automatica 8 (1972), 93-100. MR 0392060
[15] F. R. Gantmacher: The Theory of Matrices. Volume I, II. Chelsea, New York 1959.
Partner of
EuDML logo