Previous |  Up |  Next

Article

References:
[1] A. M. Bloch, N. H. McClamroch: Control of mechanical systems with classical nonholonomic constraints. In: Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, 1989, pp. 201-205. MR 1038930
[2] A.M. Bloch M. Reyhanoglu, N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Control 57 (1992), 11, 1746-1757. MR 1195215
[3] R. W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. Brockett, R. S. Millmann and H.J. Sussmann, eds.), Birkhauser, Boston, MA, 1983, pp. 181-191. MR 0708502 | Zbl 0528.93051
[4] G. Campion B. d'Andrea-Novel, G. Bastin: Structural properties of nonholonomic mechanical systems. In: Proc. 1st European Control Conference, Grenoble 1991, pp. 2089-2094.
[5] C. Canudas de Wit, O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 57 (1992), 11, 1791-1797. MR 1195224
[6] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992), 295-312. MR 1164379 | Zbl 0760.93067
[7] B. d'Andrea-Novel G. Bastin, G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 2527-2532.
[8] A. De Luca L. Lanari, G. Oriolo: Control of redundant robots on cyclic trajectories. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 500-506.
[9] J. Descusse, D. H. Moog: Dynamic decoupling for right-invertible nonlinear systems. Systems Control Lett. 8 (1987), 345-349. MR 0884884 | Zbl 0617.93024
[10] M. D. Di Benedetto, J. W. Grizzle: An analysis of regularity conditions in nonlinear synthesis. In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds., Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Berlin - Heidelberg - New York 1990, pp. 843-850. Zbl 0709.93040
[11] A. Isidori: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin - Heidelberg - New York 1989.
[12] G. Lafferriere, H. J. Sussmann: Motion planning for controllable systems without drift: A preliminary report. Report SYCON-90-04, Rutgers University, N.J., July 1990.
[13] J. P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example. Report STAN-CS-90-1345, Stanford University, CA, December 1990.
[14] R. Marino: On the largest feedback linearizable subsystem. Systems Control Lett. 6 (1986), 345-351. MR 0821930
[15] R. M. Murray, S. S. Sastry: Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1121-1126.
[16] G. Oriolo, Y. Nakamura: Control of mechanical systems with second-order non-holonomic constraints: Underactuated manipulators. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 2394-2403.
[17] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 18 (1992), 147-158. MR 1149359 | Zbl 0744.93084
[18] J.-B. Pomet B. Thuilot G. Bastin, G. Campion: A hybrid strategy for the feed- back stabilization of nonholonomic mobile robots. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 129-134.
[19] M. Reyhanoglu, N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum. In: Proc. 1991 AIAA Conf. on Guidance, Navigation, and Control, New Orleans 1991, pp. 1330-1340.
[20] C. Samson, K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proc. 1991 IEEE Internat. Conf. on Robotics and Automation, Sacramento 1991, pp. 1136-1141.
[21] H. J. Sussmann: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 1, 158-194. MR 0872457 | Zbl 0629.93012
[22] H. J. Sussmann: Local controllability and motion planning for some classes of systems with drift. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1110-1114.
[23] Z. Vafa, S. Dubowsky: The kinematics and dynamics of space manipulators: The virtual manipulator approach. Internat. J. Robotics Research 9 (1990), 4, 3-21.
Partner of
EuDML logo