Previous |  Up |  Next

Article

References:
[1] J. Anděl: Statistische Analyse von Zeitreihen. Akademie-Verlag, Berlin 1984. MR 0762087
[2] J. Geweke, S. Porter-Hudak: The estimation and application of long memory time series models. J. Time Series Anal. 4 (1983), 221-238. MR 0738585 | Zbl 0534.62062
[3] I. C. Gradštejn, I. M. Ryžik: Tablicy integralov, summ, rjadov i proizvedenij. Izd. 4-oje, Gos. izd. fiz.-mat. literatury, Moskva 1962.
[4] C. W. J. Granger: Long memory relationships and the aggregation of dynamic models. J. Econometrics 14 (1980), 227-238. MR 0597259 | Zbl 0466.62108
[5] C. W. Granger, R. Joyeux: An introduction to long memory time series models and fractional differencing. J. Time Series Anal. 1 (1980), 15 - 29. MR 0605572 | Zbl 0503.62079
[6] M. K. Grebenča, S. I. Novoselov: Učebnice matematické analysy II. Translated from Russian. NČSAV, Praha 1955.
[7] E. J. Hannan: The estimation of spectral density after trend removal. J. Roy. Statist. Soc. Ser. B 20 (1958), 323-333. MR 0101605
[8] J. R. M. Hosking: Fractional differencing. Biometrika 68 (1981), 165-176. MR 0614953 | Zbl 0464.62088
[9] J. R. M. Hosking: Some models of persistence in time series. In: Time Series Analysis, Theory and Practice 1, ed. O. D. Anderson (Proc. Int. Conf. Valencia, 1981), 642-653. North Holland, Amsterdam 1982.
[10] V. Jarník: Integrální počet II. (Integral Calculus II.) NČSAV, Praha 1956.
[11] A. Jonas: Long Memory Self Similar Series Models. (unpublished manuscript). Harvard University 1981.
[12] B. B. Mandelbrot: A fast fractional Gaussian noise generator. Water Resour. Res. 7 (1971), 543-553.
[13] B. B. Mandelbrot, J. W. van Ness: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10 (1968), 422-437. MR 0242239
[14] B. B. Mandelbrot, J. R. Wallis: Computer experiments with fractional Gaussian noises. Water Resour. Res. 5 (1969), 228-267.
[15] A. I. McLeod, K. W. Hipel: Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon. Water Resour. Res. 14 (1978), 491 - 508.
[16] P. E. O'Connell: A simple stochastic modelling of Hurst's law. In: Mathematical Models of Hydrology. Symposium, Warsaw, Vol. 1 (1971), 169-187 (IAHS Publ. No. 100, 1974).
[17] P. E. O'Connell: Stochastic Modelling of Long-Term Persistence in Streamflow Sequences. Ph. D. Thesis, Civil Engineering Dept., Imperial College, London 1974.
[18] W. Rudin: Analýza v reálném a komplexním oboru. (Translated from English original Real and Complex Analysis.) Academia, Praha 1977. MR 0497401 | Zbl 0925.00003
[19] Z. Vízková: Spektrální analýza časových řad. (Spectral analysis of time series.) Ekonomicko-matematický obzor 6 (1970), 285-309.
Partner of
EuDML logo