Previous |  Up |  Next

Article

References:
[1] J. B. Brewer: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits and Systems 25 (1978), 772-781. , MR 0510703 | Zbl 0397.93009
[2] A. T. Fuller: Conditions for a matrix to have only characteristic roots with negative real parts. J. Math. Anal. Appl. 23 (1968), 71-98. MR 0228517 | Zbl 0157.15705
[3] D. C. Hyland, E. G. Collins: Block Kronecker products and block norm matrices in large-scale systems analysis. SIAM J. Matrix Anal. Appl. 10 (1989), 18-29. MR 0976149 | Zbl 0684.15010
[4] P. T. Kokotović H. K. Khalil, J. O'Reilly: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London 1986. MR 0950486
[5] J. Lunze: Determination of robust multivariable I-controllers by means of experiments and simulation. Systems Anal. Modelling Simulation 2 (1985), 227-249. MR 0824473 | Zbl 0569.93045
[6] J. R. Magnus: Linear Structures. Griffin, London 1988. MR 0947343 | Zbl 0667.15010
[7] M. Morari: Robust stability of systems with integral control. IEEE Trans. Automat. Control 30 (1985), 574-577. MR 0789328 | Zbl 0558.93069
[8] D. Mustafa: Block Lyapunov sum with applications to integral controllability and maximal stability of singularly perturbed systems. Internat. J. Control 61 (1995), 47-63. MR 1619710 | Zbl 0817.93009
[9] S. Sen, K. B. Datta: Stability bounds of singularly perturbed systems. IEEE Trans. Automat. Control 38 (1993), 302-304. MR 1206817
[10] S. Sen R. Ghosh, K. B. Datta: Stability bounds for high-gain feedback systems. J. Inst. Engineers, submitted.
[11] A. Tesi, A. Vicino: Robust stability of state-space models with structured uncertainties. IEEE Trans. Automat. Control 35 (1990), 191-195. MR 1038416 | Zbl 0705.93061
[12] K. D. Young P. T. Kokotović, V. Utkin: Singular perturbation analysis of high-gain feedback systems. IEEE Trans. Automat. Control 22 (1977), 931-938. MR 0476055
Partner of
EuDML logo