[1] J. B. Brewer:
Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits and Systems 25 (1978), 772-781. ,
MR 0510703 |
Zbl 0397.93009
[2] A. T. Fuller:
Conditions for a matrix to have only characteristic roots with negative real parts. J. Math. Anal. Appl. 23 (1968), 71-98.
MR 0228517 |
Zbl 0157.15705
[3] D. C. Hyland, E. G. Collins:
Block Kronecker products and block norm matrices in large-scale systems analysis. SIAM J. Matrix Anal. Appl. 10 (1989), 18-29.
MR 0976149 |
Zbl 0684.15010
[4] P. T. Kokotović H. K. Khalil, J. O'Reilly:
Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London 1986.
MR 0950486
[5] J. Lunze:
Determination of robust multivariable I-controllers by means of experiments and simulation. Systems Anal. Modelling Simulation 2 (1985), 227-249.
MR 0824473 |
Zbl 0569.93045
[7] M. Morari:
Robust stability of systems with integral control. IEEE Trans. Automat. Control 30 (1985), 574-577.
MR 0789328 |
Zbl 0558.93069
[8] D. Mustafa:
Block Lyapunov sum with applications to integral controllability and maximal stability of singularly perturbed systems. Internat. J. Control 61 (1995), 47-63.
MR 1619710 |
Zbl 0817.93009
[9] S. Sen, K. B. Datta:
Stability bounds of singularly perturbed systems. IEEE Trans. Automat. Control 38 (1993), 302-304.
MR 1206817
[10] S. Sen R. Ghosh, K. B. Datta: Stability bounds for high-gain feedback systems. J. Inst. Engineers, submitted.
[11] A. Tesi, A. Vicino:
Robust stability of state-space models with structured uncertainties. IEEE Trans. Automat. Control 35 (1990), 191-195.
MR 1038416 |
Zbl 0705.93061
[12] K. D. Young P. T. Kokotović, V. Utkin:
Singular perturbation analysis of high-gain feedback systems. IEEE Trans. Automat. Control 22 (1977), 931-938.
MR 0476055