Previous |  Up |  Next

Article

References:
[1] M. J. Fisher R. E. Ladner: Propositional modal logic of programs. Proc. 9th Annual ACM Symp., Boulder 1977, 286-294.
[2] D. Harel: First order dynamic logic. (Lecture Notes in Computer Science Vol. 68.) Springer-Verlag, Berlin-Heidelberg-New York 1979. MR 0567695 | Zbl 0403.03024
[3] D. Harel A. R. Meyer V. R. Pratt: Computability and completeness in logics of programs. Proc. 9th Annual ACM Symp., Boulder 1977, 261-268. MR 0495101
[4] D. Harel V. R. Pratt: Nondeterminism in logics of programs. Proc. 5th ACM Symp. on Principles of Programming Languages, Tucson, Ariz. 1978, 203-213.
[5] D. Litvintchouk V. R. Pratt: A proof-checker for dynamic logic. Proc. 5th IJCAI, Boston 1978, 552-558.
[6] R. Parikh: A completeness result for propositional dynamic logic. MFCS 1978, J. Winkowski (ed.). (Lect. Notes in Comp. Sci. 64.) Springer-Verlag, Berlin-Heidelberg-New York 1978, 405-116.
[7] R. Parikh: A decidability result for second order process logic. Preprint MIT/LCS/TM-112 (1978). MR 0539839
[8] V. R. Pratt: Semantic considerations of Floyd-Hoare logic. Proc. 17th IEEE Symp. on Found, of Comp. Sci. (1976), 109-121. MR 0502164
[9] V. R. Pratt: Six lectures on dynamic logic. Preprint MIT/LCS/TM-117 (1978). MR 0682417
[10] V. R. Pratt: A near-optimal method for reasoning about action. Preprint MIT/LCS/TM-113 (1978). MR 0574593
[11] H. Rasiowa: Algorithmic logic. Prace IPI PAN 281, Warszawa 1977. Zbl 0386.03009
[12] A. Salwicki: Formalized algorithmic languages. Bull. Acad. Polon. Sci., Ser. Math., Phys. Astron. 18 (1970), 227-232. MR 0270852 | Zbl 0198.02801
[13] P. Hájek P. Kůrka: A second order dynamic logic with array assignments. (Zaslano do tisku.)
Partner of
EuDML logo