Previous |  Up |  Next

Article

References:
[I] Š. Šujan: A local structure of stationary perfectly noiseless codes between, stationary non-ergodic sources. Part I: General considerations. Kybernetika 18 (1982), 361-375. MR 0686518
[II] Š. Šujan: A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. Part II: Applications. Kybernetika 18 (1982), 465-484. MR 0707396
[34] Š. Šujan: Epsilon-rates and noiseless fixed-rate block coding for stationary non-ergodic sources. Elektron. Informationsverarb. Kybernet. (EIK) 19 (1983), 375-385. MR 0741757
[35] Š. Šujan: Generators for amenable group actions. Monatsh. für Math. 95 (1983), 67-79. MR 0697350
[36] Š. Šujan: Codes in ergodic theory and information: some examples. In: Ergodic Theory and Related Topics (H. Michel, ed.), Akademie Verlag, Berlin 1982, 181-184. MR 0730763
[39] A. Fieldsteel: The relative isomorphism problem for Bernoulli flows. Israel J. Math. 40 (1981), 197-216. MR 0654577
[40] R. M. Gray, L. D. Davisson: The ergodic decomposition of stationary discrete random processes. IEEE Trans. Inform. Theory IT-20 (1974), 625-636. MR 0373763 | Zbl 0301.94027
[41] J. C. Kieffer: A simple derivation of Thouvenot's relative isomorphism theorem. Preprint, Univ. of Missouri - Rolla 1982.
[42] V. A. Rokhlin: Lectures on entropy theory of transformations with invariant measure. (in Russian). Uspekhi mat. nauk 22 (1967), vyp. 5 (137), 4-56. MR 0217258
[43] Š. Šujan: Ergodic theory, entropy, and coding problems of information theory. Kybernetika 19 (1983), supplement, 68 pp. MR 0902063
[44] J.-P. Thouvenot: Quelques proprietes des systémes dynamiques qui se decomposent en un produit de deux systémes dont l'un est un schema de Bernoulli. Israel J. Math. 21 (1975), 177-207. MR 0399419 | Zbl 0329.28008
Partner of
EuDML logo