Previous |  Up |  Next

Article

References:
[1] A. Barron L. Györfi, E. van der Meulen: Distribution estimation consistent in total variation and in two types of information divergence. IEEE Trans. Inform. Theory 38 (1992), 1437-1454. MR 1178189
[2] T. Berger: Rate Distortion Theory: A Mathematical Basis for Data Compression. Prentice-Hall, Englewood Cliffs, NJ 1971. MR 0408988
[3] H. Chernoff, E. L. Lehmann: The use of maximum likelihood estimates in $\chi^2$ tests of goodness of fit. Ann. Math. Statist. 25 (1954), 579-586. MR 0065109 | Zbl 0056.37103
[4] B. S. Clarke, A. R. Barron: Information-theoretic asymptotics and Bayes methods. IEEE Trans. Inform. Theory 36 (1990), 453-471. MR 1053841
[5] T. M. Cover, J. A. Thomas: Elements of Information Theory. New York, Wiley 1991. MR 1122806 | Zbl 0762.94001
[6] N. Cressie, T. R. C. Read: Multinomial goodness of fit tests. J. Roy. Statist. Soc. Ser. A 46 (1984), 440-464. MR 0790631 | Zbl 0571.62017
[7] I. Csiszár: Information-type measures of difference of probability distributions and their indirect observation. Studia Sci. Math. Hungar. 2 (1967), 299-318. MR 0219345
[8] I. Csiszár: Generalized cutoff rates and Rényi's information measures. IEEE Trans. Inform. Theory 41 (1995), 26-34. MR 1366742 | Zbl 0822.94003
[9] R. C. Dahiya, J. Gurland: Pearson chi-squared test of fit with random intervals. Biometrika 59 (1972), 147-153. MR 0314191 | Zbl 0232.62017
[10] A. Gersho, R. M. Gray: Vector Quantization and Signal Compression. Kluwer, Boston 1991.
[11] L. Györfi I. Vajda, E. van der Meulen: Minimum Hellinger distance point estimates consistent under weak family regularity. Mathem. Methods of Statistics 3 (1994), 25-45. MR 1272629
[12] L. Györfi I. Vajda, E. van der Meulen: Parameter estimation by projecting on structural families. In: Proc. 5th Prague Symp. on Asympt. Statistics (P. Mandl and H. Hušková, eds.), Physica Verlag, Wien 1994, pp. 261-272. MR 1311945
[13] W. C. M. Kallenberg J. Oosterhoff, B. F. Schriever: The number of classes in chi-squared goodness of fit tests. J. Amer. Statist. Assoc. 80 (1985), 959-968. MR 0819601
[14] M. Menéndez D. Morales L. Pardo, I. Vajda: Divergence-based estimation and testing of statistical models of classification. J. Multivariate Anal. 54 (1995), 329-354. MR 1345543
[15] F. Liese, I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. MR 0926905 | Zbl 0656.62004
[16] D. S. Moore: A chi-squared statistics with random cell boundaries. Ann. Math. Statist. 42 (1971), 147-156. MR 0275601
[17] D. Morales L. Pardo, I. Vajda: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 49, 1995. MR 1368984
[18] F. Österreicher, I. Vajda: Statistical information and discrimination. IEEE Trans. Inform. Theory 39 (1993), 1036-1039. MR 1237725
[19] F. H. Ruymgaart: A note on chi-square statistics with random cell boundaries. Ann. Statist. 3 (1975), 965-968. MR 0378183 | Zbl 0325.62015
[20] M. Teboulle, I. Vajda: Convergence of best $\phi$-entropy estimates. IEEE Trans. Inform. Theory 39 (1993), 297-301. MR 1211512 | Zbl 0765.94001
[21] I. Vajda: From perceptron to Boltzman machine: Information processing by cognitive networks. In: Proc. of the Third European School of System Sciences (I. Figuearas, A. Moncho and R. Torres, eds.), Univ. of Valencia, Valencia 1994, pp. 65-68.
[22] A. Veselý, I. Vajda: Classification of random signals by neural networks. In: Proc. of 14th Internat. Congress of Cybernetics, University of Namur, Namur 1996, in print.
Partner of
EuDML logo