Previous |  Up |  Next

Article

References:
[1] W. Ambrose: Representation of ergodic flows. Ann. of Math. 42 (1941), 723 - 739. MR 0004730 | Zbl 0025.26901
[2] W. Ambrose, S. Kakutani: Structure and continuity of measurable flows. Duke Math. J. 9(1942), 25-42. MR 0005800 | Zbl 0063.00065
[3] M. Denker, Ch. Grillenberger, K. Sigmund: Ergodic Theory on Compact Spaces. (Lecture Notes in Mathematics 527.) Springer-Verlag, Berlin-Heidelberg -New York 1976. MR 0457675 | Zbl 0328.28008
[4] Y. Katznelson, B. Weiss: Commuting measure-preserving transformations. Israel J. Math. 72(1972), 161-173. MR 0316680 | Zbl 0239.28014
[5] U. Krengel: Darstellungssätze für Strömungen und Halbströmungen I. Math. Ann. 776 (1968), 181-190. MR 0224773 | Zbl 0167.32704
[6] U. Krengel: Recent results on generators in ergodic theory. In: Trans. Sixth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Prague 1973, pp. 465-482. MR 0348078 | Zbl 0318.94024
[7] U. Krengel: On Rudolph's representation of aperiodic flows. Ann. Inst. H. Poincaré Prob. Statist. 72fi(1976), 319-338. MR 0435354 | Zbl 0356.28005
[8] M. Krutina: Asymptotic rate of a flow. Comment. Math. Univ. Carolin. 30 (1989), 23 - 31. MR 0995698 | Zbl 0674.28009
[9] M. Krutina: A note on the relation between asymptotic rates of a flow under a function and its basis-automorphism. Comment. Math. Univ. Carolin. 30 (1989), 721 - 726. MR 1045900 | Zbl 0699.28008
[10] D. Rudolph: A two-valued step coding for ergodic flows. Math. Zeitschrift 150 (1976), 201-220. MR 0414825 | Zbl 0325.28019
[11] K. Winkelbauer: On discrete information sources. In: Trans. Third Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci, Prague 1964, pp. 765-830. MR 0166000 | Zbl 0126.35702
[12] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations. Comment. Math. Univ. Carolin. 75(1977), 782-812. MR 0463403 | Zbl 0368.28020
Partner of
EuDML logo