Previous |  Up |  Next

Article

References:
[1] J. Aczél, Z. Daróczy: On Measures of Information and Their Characterizations. Academic Press, New York 1975. MR 0689178
[2] Z. Daróczy: Generalized information functions. Inform. and Control 16 (1970), 36 - 51. MR 0272528
[3] A. El-Sayed: On Different Information Measures and Communication Channels. Ph. D. Thesis University of Waterloo, Waterloo, Ontario 1975.
[4] A. El-Sayed: A generalized entropy form of the Fano inequality. Utilitas Math. 12 (1977), 289-298. MR 0479673 | Zbl 0386.94005
[5] J. Havrda, F. Charvát: Quantification method of classification process, concept of structural a-entropy. Kybernetika 3 (1967), 30-35. MR 0209067
[6] M. Hellman: An extension of the Shannon theory approach to cryptography. IEEE Trans. Inform. Theory IT-23 (1977), 289-294. MR 0530093 | Zbl 0362.94030
[7] Pl. Kannappan: On some functional equations from additive and nonadditive measures I. Proc. Edinburgh Math. Soc. 23 (1980), 145-150. MR 0597119
[8] Pl. Kannappan, P. K. Sahoo: On a functional equation connected to sum form non-additive information measures on an open domain - I. Kybernetika 22 (1986), 268-275. MR 0852326
[9] A. B. Khan R. Autar, H. Ahmad: Noiseless coding theorems for generalized non-additive entropy. Tamkang J. Math. 12 (1981), 15-20. MR 0714490
[10] L. Losonczi: A characterization of entropies of degree $\aplha$. Metrika 28 (1981), 237-244. MR 0642931
[11] S. C. Lu: The existence of good cryptosystems for key rates greater than the message redundancy. IEEE Trans. Inform. Theory IT-25 (1979), 475-477. MR 0536240 | Zbl 0409.94018
[12] P. K. Sahoo: Renyi's entropy of order $\aplha$ and Shannon's random cipher result. J. Combin. Inform. System Sci. 8 (1983), 263-270. MR 0783765
[13] C. E. Shannon: Communication theory of secrecy system. Bell System Tech. J. 28 (1949), 656-715. MR 0032133
Partner of
EuDML logo