Previous |  Up |  Next

Article

References:
[1] G. D. Forney: Minimal bases of rational vector spaces with applications to multivariable linear systems. SIAM J. Control Optim. 13 (1975), 493 - 520. MR 0378886 | Zbl 0269.93011
[2] B. K. Ghosh, C. I. Byrnes: Simultaneous stabilisation and simultaneous pole placement by non-switching dynamic compensation. IEEE Trans. Automat. Control AC-28 (1983), 735-741. MR 0713900
[3] R. E. Kalman: On the general theory of control systems. In: Proc. 1st IFAC Congress Automat. Control, Moscow 1960, 4, pp. 481-492.
[4] N. Karcanias: Matrix Equations over Principal Ideal Domains. City Univ., Control Engin. Centre Research Report, London 1987.
[5] N. Karcanias, E. Milonidis: Total finite settling time stabilisation for discrete time SISO systems. IMA Control Theory Conf. Univ. of Strathclyde, Glasgow 1988.
[6] V. Kučera: The structure and properties of time-optimal discrete linear control. IEEE Trans. Automat. Control AC-16 (1971), 375-377.
[7] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. J. Wiley, New York 1979. MR 0573447
[8] V. Kučera: Polynomial design of dead-beat control laws. Kybernetika 16 (1980), 198-203. MR 0575425
[9] E. Milonidis, N. Karcanias: Total Finite Settling Time Stabilisation for Discrete Time MIMO systems. City University, Control Engineering Centre, Research Report CEC/ EM-NK/101, London 1990.
[10] R. Saeks, J. Murray: Fractional representation, algebraic geometry, and the simultaneous stabilisation problem. IEEE Trans. Automat. Control AC-27 (1982), 4, 895 - 903. MR 0680490
[11] M. Vidyasagar: Control System Synthesis: A Factorization Approach. MIT Press, Boston, Mass. 1985. MR 0787045 | Zbl 0655.93001
[12] Y. Zhao, H. Kimura: Multivariate dead-beat control with robustness. Internat. J. Control 47 (1988), 229-255. MR 0929737
Partner of
EuDML logo