Previous |  Up |  Next

Article

References:
[1] M. I. Jordan: Altractor dynamics and parallelism in a connectionist sequential machine. In: Proc. Eighth Annual Conf. of the Cognitive Science Society, Hillsdale, N.J. 1986.
[2] B. Widrow, R. Winter: Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer Magazine, March 1998.
[3] D. Rumelhart D. Hinton, G. Williams: Learning internal representations by error propagation. In: Parallel Distributed Processing (D. Rummelhart and F. McClelland, eds.), Vol. 1, The MIT Press, 1986.
[4] J. C. Hsu, A. V. Meyer: Modern Control Principles and Applications. McGraw-Hill, N. Y. 1968. Zbl 0177.12601
[5] J. T. Bialasiewicz J. C. Proano, E. T. Wall: Implementation of intelligent controller using neural network state estimator. In: Proc. Fourth IEEE International Symposium on Intelligent Control, Sept. 1989.
[6] J. W. Weinstein, J. L. Melsa: Design of a simplified vertical channel landing control autopilot using state-variables. 1970 SWIEEECO Record, IEEE Catalog No. 70C5-SWIECO.
[7] B. Bavarian: Introduction to neural networks for intelligent control. IEEE Control Systems Magazine, April 1988, 3-7.
[8] D. Psaltis A. Sideris, A. A. Yamamura: A multilayered neural network controller. IEEE Control Systems Magazine, April 1988, 17-21.
[9] P. J. Werbos: Backpropagation through time: What it does and how to do it. Proc. IEEE 75(1990), 9, 1550-1560.
[10] P. J. Werbos: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Dissertation, Committee on Appl. Math., Harvard Univ., Cambridge, Mass. 1974.
[11] B. Widrow, M. A. Lehr: 30 years of adaptive neural networks: Perception, madaline and backpropagation. In: Proc. IEEE 75 (1990), 9, 1415-1442.
[12] S. Chen C.F. N. Cowan S. A. Billings, P.M. Grant: Parallel recursive prediction error algorithm for training layered neural networks. Internat. J. Control 51 (1990), 6, 1215-1228. MR 1061701
[13] K. Hornik: Multilayer feedforward networks are universal approximators. Neural Networks Z (1989), 2, 359-366.
[14] K. Hornik: Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991), 251-257.
[15] G. Cybenko: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2 (1989), 303-314. MR 1015670 | Zbl 0679.94019
[16] D. Soloway, J. T. Bialasiewicz: Neural network modeling of nonlinear systems based on Volterra series extension of a linear model. In: Proc. 7th IEEE Intl. Symposium on Intelligent Control, Glasgow, Scotland, 1992.
[17] C. Batur H. Zhang J. Padovan, V. Kasparian: Davidon least square based neural network learning algorithms. ACC, 1992, 973-977.
[18] T. W. Miller R. S. Sutton, III, P. J. Werbos (eds.): Neural Network for Control. MIT Press, Cambrdige, Mass. 1990.
[19] K. S. Narendra, K. Parathasarathy: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1 (1990), 4-27.
[20] J. T. Bialasiewicz, D. Soloway: Neural network of dynamical systems. In: Proc. 5th IEEE Intl. Symposium on Intelligent Control, Philadelphia, 1990, 500-505.
[21] S. Chen S.A. Billings, P. M. Grant: Nonlinear system identification using neural networks. J. Control 51 (1990), 6, 1191-1214. MR 1061700
[22] M. M. Polycarpou, P. A. Ioannou: Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks. 1992, ACC, 36-40.
[23] J. T. Bialasiewicz, T. T. Ho: Neural adaptive identification and control. In: Proc. 1991 Intl. Conf. on Artificial Neural Networks in Engineering. St. Louis, Missouri, 1991.
[24] T. T. Ho H. T. Ho J. T. Bialasiewicz, E. T. Wall: Stochastic neural direct adaptive control. In: Proc. 6th IEEE Intl. Symposium on Intelligent Control, Arlington, Virginia, 1991.
[25] T. T. Ho H. T. Ho, J. T. Bialasiewicz: Stochastic neural adaptive control for non-linear time varying systems. In: Proc. 1991 Intl. Conf. on Artificial Neural Networks in Engineering. St. Louis, Missouri, 1991.
[26] T. T. Ho S. T. Ho J. T. Bialasiewicz, E. T. Wall: Stochastic neural adaptive control using state space innovations model. In: Proc. 1991 IJCNN, Singapore, 1991.
[27] T. T. Ho H. T. Ho, L. T. Ho: Stochastic neural adaptive control for time varying linear systems based on Newton and gradient optimizations. 1992, ACC, 51-55.
Partner of
EuDML logo