Previous |  Up |  Next

Article

References:
[1] A. Babloyantz J. M. Salazar, C. Nicolis: Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. 111A, 152-156, No. 3, 2 Sept. 1985. MR 0836795
[2] S. Celikovsky, A. Vaněček: Bilinear systems as the strongly nonlinear systems. In: System Structure and Control (V. Strejc, ed.), Pergamon Press, Oxford 1992, pp. 264-267.
[3] W. J. Freeman: Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potential. IEEE Trans. Circuits and Systems 35 (1988), 791-783. MR 0947807
[4] A. Garfinkel: The virtues of chaos. Beh. Brain Sci. 10 (1987), 178-179.
[5] P. Godeman: Algebraic Topology and Sheafs Theory. (In Russian, translated from French.) IIL, Moscow 1961.
[6] A. L. Goldberger V. Bhargava B. J. West, A. J. Mandeli: Some observations on the questions: is ventricular fibrilation "chaos"?. Physica 19D (1986), 282-289. MR 0844703
[7] A. J. Goldberger: Nonlinear dynamics, fractals, cardiac physiology and sudden death. In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987, pp. 118-125. MR 0901320
[8] A. Goldberger: Why a steady heart may not be healthy. (Review of message given by A. Goldberger of the Harvard Medical School to the American Association for the Advancement of Science.) New Scientist, 21 January 1989, 31.
[9] H. Haken: Synergetik-Selbstorganizationsvorgange in Physik, Chemie und Biologic. A. v. Humbold-Stiftung Mitteilungen No. 43 (1984), 12-23.
[10] A. V. Holden, ed.: Chaos. Princeton Univ. Press, Princeton 1986. Zbl 0743.58005
[11] E. J. Lorenz: Deterministic nonperiodic flow. J. Atmosph. Sci. 20 (1963), 130-141.
[12] T. Matsumoto L. O. Chua, M. Komuro: The double scroll. IEEE Trans. Circuits and Systems 32 (1985), 798-818. MR 0801479
[13] J. M. Ottino: The mixing of fluids. Sci. Amer. 56-57, 1989.
[14] A. Scarda, W. J. Freeman: How brains make chaos in order to make sense of the world. Beh. Brain Sci. 10 (1987), 161-195.
[15] A. Vaněček: Root ra-tissues: Systems under an action of the m parameters. Kybernetika 21 (1985), 456-465. MR 0831102
[16] A. Vaněček: Control Systems Theory. (In Czech with extended summary in English.) Academia, Prague 1990.
[17] A. Vaněček: Unification of Analysis and Synthesis of Control Systems: Systems with Actions of Parameters. (In Czech.) DSc. Dissertation, ÚTIA ČSAV, Praha 1989.
[18] A. Vaněček: Strongly nonlinear and other control systems. Problems Control Inform. Theory SO (1991), 3-12. MR 1102179
[19] A. Vaněček: Double scroll - chaotic attractor of nonlinear electrical circuit of the 3rd order. (in Czech). Fyzika a synergetika, JČSMF, Praha 1989, pp. 178-187.
[20] A. Vaněček: MatLab eigenanalysis of Chua, Lorenz, and Roessler chaotic systems. With the diskette EigenChaos. ÚTIA ČSAV, Prague 1991. MR 1102179
[21] A. Vaněček: MatLab eigensynthesis of canonical hyperchaotic systems. With the diskette CanonChaos. ÚTIA ČSAV, Prague 1992.
[22] A. Vaněček: MatLab eigensynthesis of canonical cubic hyperchaotic systems. With the diskette CanonChaos II. ÚTIA ČSAV, Prague 1992.
[23] A. Vaněček, S. Čelikovský: Synergy of hyperbolic sets and stabilization of chaos. (in Czech). Synergelika'92, Stará Lesná 1992, pp. 46-53.
[24] A. Vaněček, S. Čelikovský: Chaos synthesis via root locus. Submitted for publication 1992.
[25] M. I. Vojcechovskij: Sheafs. (in Russian.) Matematičeskaja enciklopedija 4, 894, SE, Moscow 1984.
Partner of
EuDML logo