Previous |  Up |  Next

Article

References:
[1] D. Goodman: Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Trans. Circuits and Systems CAS-24 (1977), 4. MR 0444266
[2] C. Heij: Deterministic Identification of Dynamical Systems. Springer-Verlag, Heidelberg 1989. MR 1015289 | Zbl 0759.93024
[3] B. Levy: 2-D Polynomial and Rational Matrices, and Their Applications for the Modeling of 2-D Dynamical Systems. Ph. D. Thesis, Technical Report No. M735-11, Information Systems Laboratory, Department of Electrical Engineering, Stanford University 1981.
[4] P. Rocha, J. C. Willems: State for 2D systems. Linear Algebra Appl. 122/123/124 (1989), 1003-1038. MR 1020018
[5] P. Rocha, J. C. Willems: Controllability of 2D systems. IEEE Trans. Automat. Control AC-S6 (1991), 413-423. MR 1097094
[6] P. Rocha: Representation of noncausal 2D systems. In: New Trends in Systems Theory (G. Conte, A.M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, Vol. 7, 1991. Zbl 0735.93043
[7] J. C. Willems: From time series to linear system. Part I. Automatica 22 (1986), 5, 561-580. MR 0863344
Partner of
EuDML logo