Previous |  Up |  Next

Article

References:
[1] R. J. Fontana R. M. Gray J. C. Kieffer: Asymptotically mean stationary channels. (1979 - preprint). MR 0619116
[2] R. M. Gray J. C. Kieffer: Asymptotically mean stationary measures. (1979 -submitted to Ann. of Prob.). MR 0586779
[3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 1T-25 (1979), 292-306. MR 0528007
[4] K. Jacobs: Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle. Math. Annalen 757 (1959), 125-135. MR 0128003 | Zbl 0089.33903
[5] J. C. Kieffer: A general formula for the capacity of stationary nonanticipatory channels. Inform. and Control 26 (1971), 381-391. MR 0384324
[6] J. Nedoma: The capacity of a discrete channel. Trans. 1st Prague Conf. Inform. Theory etc., NČSAV, Prague 1957, 143-181. MR 0102451 | Zbl 0088.10701
[7] K. R. Parthasarathy: On the integral representation of the rate of transmission of a stationary channel. 111. J. Math. 2 (1961), 299-305. MR 0121259 | Zbl 0100.33903
[8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise. Sankhya A 25 (1963), 75-84. MR 0173568 | Zbl 0119.34003
[9] C. E. Shannon: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379-423, 623-656. MR 0026286 | Zbl 1154.94303
[10] Š. Šujan: On the integral representation of the entropy rate. Studia Sci. Math. Hung. 11 (1976), 25-36. MR 0545093
[11] Š. Šujan: A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp. MR 0465531
[12] Š. Šujan: Epsilon-rates, epsilon-quantiles, and group coding theorems for finitely additive information sources. Kybernetika 16 (1980), 105-119. MR 0575419
[13] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets. 3rd Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, Liblice 1980, 201-206.
[14] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 127-148. MR 0275979 | Zbl 0245.94013
[15] K. Winkelbauer: On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255. MR 0300751
[16] K. Winkelbauer: On the regularity condition for decomposable communication channels. Kybernetika 7 (1971), 314-327. MR 0349272 | Zbl 0244.94007
[17] K. Winkelbauer: On discrete channels decomposable into memoryless components. Kybernetika 5 (1972), 114-132. MR 0339887 | Zbl 0256.94021
[18] K. Winkelbauer: On the capacity of decomposable channels. Trans. 6th Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903-914. MR 0371509 | Zbl 0298.94026
[19] K. Winkelbauer: Information channels with memoryless components. Trans. 7th Prague Conf. Inform. Theory etc., Academia, Prague 1978, 559-576. MR 0519508 | Zbl 0421.94007
[20] K. Winkelbauer: Non-smooth channels with additive random noise. Trans. 8th Prague Conf. Inform. Theory etc., Academia, Prague 1978, Vol. B, 365-381. MR 0536830 | Zbl 0416.94008
[21] K. Winkelbauer: Discrete communication channels decomposable into finite-memory components. In: Contributions to Statistics (Jaroslav Hájek Memorial Volume, J. Jurečková, ed.), Academia, Prague 1979, 277-306. MR 0561275 | Zbl 0421.94008
[22] J. Wolfowitz: Coding Theorems of Information Theory. 2nd edition. Springer-Verlag, Berlin-Gottingen-New York 1964. MR 0176851 | Zbl 0132.39704
Partner of
EuDML logo