[1] R. J. Fontana R. M. Gray J. C. Kieffer:
Asymptotically mean stationary channels. (1979 - preprint).
MR 0619116
[2] R. M. Gray J. C. Kieffer:
Asymptotically mean stationary measures. (1979 -submitted to Ann. of Prob.).
MR 0586779
[3] R. M. Gray D. S. Ornstein:
Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 1T-25 (1979), 292-306.
MR 0528007
[4] K. Jacobs:
Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle. Math. Annalen 757 (1959), 125-135.
MR 0128003 |
Zbl 0089.33903
[5] J. C. Kieffer:
A general formula for the capacity of stationary nonanticipatory channels. Inform. and Control 26 (1971), 381-391.
MR 0384324
[6] J. Nedoma:
The capacity of a discrete channel. Trans. 1st Prague Conf. Inform. Theory etc., NČSAV, Prague 1957, 143-181.
MR 0102451 |
Zbl 0088.10701
[7] K. R. Parthasarathy:
On the integral representation of the rate of transmission of a stationary channel. 111. J. Math. 2 (1961), 299-305.
MR 0121259 |
Zbl 0100.33903
[8] K. R. Parthasarathy:
Effective entropy rate and transmission of information through channels with additive random noise. Sankhya A 25 (1963), 75-84.
MR 0173568 |
Zbl 0119.34003
[9] C. E. Shannon:
A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379-423, 623-656.
MR 0026286 |
Zbl 1154.94303
[10] Š. Šujan:
On the integral representation of the entropy rate. Studia Sci. Math. Hung. 11 (1976), 25-36.
MR 0545093
[11] Š. Šujan:
A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp.
MR 0465531
[12] Š. Šujan:
Epsilon-rates, epsilon-quantiles, and group coding theorems for finitely additive information sources. Kybernetika 16 (1980), 105-119.
MR 0575419
[13] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets. 3rd Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, Liblice 1980, 201-206.
[14] K. Winkelbauer:
On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 127-148.
MR 0275979 |
Zbl 0245.94013
[15] K. Winkelbauer:
On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255.
MR 0300751
[16] K. Winkelbauer:
On the regularity condition for decomposable communication channels. Kybernetika 7 (1971), 314-327.
MR 0349272 |
Zbl 0244.94007
[17] K. Winkelbauer:
On discrete channels decomposable into memoryless components. Kybernetika 5 (1972), 114-132.
MR 0339887 |
Zbl 0256.94021
[18] K. Winkelbauer:
On the capacity of decomposable channels. Trans. 6th Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903-914.
MR 0371509 |
Zbl 0298.94026
[19] K. Winkelbauer:
Information channels with memoryless components. Trans. 7th Prague Conf. Inform. Theory etc., Academia, Prague 1978, 559-576.
MR 0519508 |
Zbl 0421.94007
[20] K. Winkelbauer:
Non-smooth channels with additive random noise. Trans. 8th Prague Conf. Inform. Theory etc., Academia, Prague 1978, Vol. B, 365-381.
MR 0536830 |
Zbl 0416.94008
[21] K. Winkelbauer:
Discrete communication channels decomposable into finite-memory components. In: Contributions to Statistics (Jaroslav Hájek Memorial Volume, J. Jurečková, ed.), Academia, Prague 1979, 277-306.
MR 0561275 |
Zbl 0421.94008
[22] J. Wolfowitz:
Coding Theorems of Information Theory. 2nd edition. Springer-Verlag, Berlin-Gottingen-New York 1964.
MR 0176851 |
Zbl 0132.39704