Previous |  Up |  Next

Article

References:
[1] P. Kall: Stochastic Linear Programming. Springer-Verlag, Berlin--Heidelberg--New York 1976. MR 0446504 | Zbl 0317.90042
[2] V. Kaňková: Differentiability of the optimalized function in a two-stage stochastic nonlinear programming problem. Ekonomicko-matematický obzor 14 (1978), 3, 322-330. In Czech. MR 0514885
[3] V. Kaňková: An approximative solution of a stochastic optimization problem. In: Trans. of the Eighth Prague Conference, Academia, Prague 1978, pp. 327-332. MR 0536792
[4] V. Kaňková: Approximative solution of problems of two-stage stochastic nonlinear programming. Ekonomicko-matematický obzor 16 (1980), 1, 64-76. In Czech. MR 0571742
[5] V. Kaňková: A note on the differentiability in two-stage stochastic nonlinear programming problems. Kybernetika 24 (1988), 3, 207-215. MR 0953689
[6] S. Karlin: Mathematical Methods and Theory in Games, Programming, and Economics. Pergamon Press, London--Paris 1959.
[7] В. Н. Пшеничный: Ю. М. Данилин: Численные методы в экстремальных задачах. Наука, Москва 1975. Zbl 1170.01354
[8] В. Н. Пшеничный: Необоходимые условия экстремума. Наука, Москва 1982. Zbl 1170.01407
[9] R. T. Rockafellar: Convex Analysis. Princeton Press, New Jersey 1970. MR 0274683 | Zbl 0193.18401
[10] R. T. Rockafellar, R. J.-B. Wets: Stochastic convex programming: basic duality. Pacific J. Math. 62 (1976), 173-195. MR 0416582 | Zbl 0339.90048
[11] R. T. Rockafellar, R. J.-B. Wets: The optimal recourse problem in discrete time: $L^1$-multiplies for inequality constraints. SIAM J. Control Optim. 16 (1978), 1, 16-36. MR 0496664 | Zbl 0397.90078
[12] S. Vogel: Necessary optimality conditions for two-stage stochastic programming problems. Optimization 16 (1985), 4, 607-616. MR 0791369 | Zbl 0579.90073
Partner of
EuDML logo