[1] J. Besag:
Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. B 36 (1974), 192-226.
MR 0373208 |
Zbl 0327.60067
[2] J. Besag:
On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 (1986), 259-302.
MR 0876840 |
Zbl 0609.62150
[3] E. Bolthausen:
On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 (1982), 1047-1050.
MR 0672305 |
Zbl 0496.60020
[4] F. Comets:
On consistency of a class of estimators for exponential families of Markov random fields on a lattice. Ann. Statist. 20 (1992), 455-468.
MR 1150354
[5] R. L. Dobrushin, B. S. Nahapetian:
Strong convexity of the pressure for the lattice systems of classical statistical physics. Teor. Mat. Phys. 20 (1974), 223-234.
MR 0468967
[6] D. Geman, S. Geman: Maximum Entropy and Bayesian Methods in Sciences and Engineering. (C. R. Smith and G. J. Erickson, eds), Kluwer, Dordrecht 1988.
[7] S. Geman, C. Graffigne:
Markov random field image models and their applications to computer vision. In: Proc. Internat. Congress Math. (A. M. Gleason ed.), Amer. Math. Soc, Providence, R. I. 1987.
MR 0934354 |
Zbl 0665.68067
[9] B. Gidas:
Consistency of maximum likelihood and pseudo-likelihood estimators for Gibbs distribution. In: Stochastic Differential Systems, Stochastic Control Theory, and Application (W. Fleming and P. L. Lions, eds., IMA Vol. Math. Appl. 10). Springer, New York 1988.
MR 0934721
[10] B. Gidas: Parameter estimation for Gibbs distributions. I. Fully observed data. In: Markov Random Fields: Theory and Applications (R. Chellapa and R. Jain, eds.), Academic Press, New York 1991.
[11] L. Gross:
Absence of second-order phase transition in the Dobrushin's uniqueness region. J. Statist. Phys. 27 (1981), 57-72.
MR 0610692
[12] X. Guyon: Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Actes de la 6eme Rencontre Franco-Belge de Statisticiens, Bruxelles 1985.
[13] X. Guyon, H. R. Künsch:
Asymptotic comparison of estimators in the Ising model. In: Stochastic Models, Statistical Methods, and Algorithms in Image Analysis (P. Barone, A. Frigessi and M. Piccioni, eds., Lecture Notes in Statistics 74), Springer, Berlin 1992, pp. 177-198.
MR 1188486
[14] J. Hájek:
Local asymptotic minimax and admissibility in estimation. In: Proc. 6th Berkeley Symposium, Vol. 1, Berkeley, Calif. 1970, pp. 175-194.
MR 0400513
[15] F. R. Hampel E. M. Ronchetti P. J. Rousseeuw, W. A. Stahel:
Robust Statistics -- The Approach Based on Influence Functions. Wiley, New York 1986.
MR 0829458
[16] M. Janžura:
Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika 23 (1987), 2, 136-142.
MR 0886826
[17] M. Janžura:
Statistical analysis of Gibbs random fields. In: Trans. 10th Prague Conf. on Inform. Theory, Stat. Dec. Functions, Random Processes 1986, Praha, pp. 429-438.
MR 1136301
[18] M. Janžura:
Asymptotic theory of parameter estimation for Gauss-Markov random fields. Kybernetika 24 (1988), 161-176.
MR 0953686
[19] M. Janžura:
Local asymptotic normality for Gibbs random fields. In: Proceedings of the Fourth Prague Symposium on Asymptotic Statistics (P. Mandl, M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284.
MR 1051446
[20] M. Janžura, P. Lachout:
A central limit theorem for stationary random fields. Math. Methods Statist. 4 (1995), 463-472.
MR 1372017
[21] H. R. Künsch:
Thermodynamics and statistical analysis of Gaussian random fields. Z. Wahrsch. Verw. Gebiete 58 (1981), 407-421.
MR 0639149
[22] H. Künsch:
Decay of correlations under Dobrushin's uniqueness condition and its applications. Commun. Math. Phys. 84 (1982), 207-222.
MR 0661133 |
Zbl 0495.60097
[23] H. Künsch:
Infinitesimal robustness for autoregressive processes. Ann. Statist. 12 (1984), 843-863.
MR 0751277
[25] D. J. Strauss:
Analysing binary lattice data with the nearest-neighbor property. J. Appl. Probab. 12 (1975), 702-712.
MR 0386122 |
Zbl 0322.62072
[26] L. Younès:
Estimation and annealing for Gibbsian fields. Ann. Inst. H. Poincaré Sect. B (N. S.) 24 (1988), 269-294.
MR 0953120
[27] L. Younès:
Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Related Fields 82 (1989), 625-645.
MR 1002904