[1] K. K. Aase:
Recursive estimation in non-linear time series models of autoregressive type. J. Roy. Statist. Soc. Ser. B 45 (1983), 228-237.
MR 0721750 |
Zbl 0524.62085
[2] B. D. O. Anderson, J. B. Moore:
Optimal Filtering. Prentice-Hall, Englewood Cliffs, New Jersey 1979.
Zbl 0688.93058
[3] A. E. Bryson, J. C. Ho:
Applied Optimal Control. J. Wiley, New York 1975.
MR 0446628
[4] K. Campbell:
Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist. 10 (1982), 442-453.
MR 0653519 |
Zbl 0492.62076
[5] J. E. Englund: Multivariate Recursive M-estimators of Location and Scatter for Dependent Sequences. Research Report, University of Lund and Lund Institute of Technology 1988.
[6] A. A. Ershov, R. S. Liptser:
Robust Kalman filter in discrete time. Automat. Remote Control 39 (1978), 359-367.
Zbl 0417.93070
[8] P. J. Harrison, C. F. Stevens:
Bayesian forecasting. J. Roy. Statist. Soc. Ser. B 38 (1976), 205-247.
MR 0655429 |
Zbl 0349.62062
[9] U. Holst:
Convergence of a recursive stochastic algorithm with m-dependent observations. Scand. J. Statist. 7 (1980), 207-215.
MR 0605992 |
Zbl 0455.62065
[10] U. Hoist:
Convergence of a recursive robust algorithm with strongly regular observations. Stochastic Process. Appl. 16 (1984), 305-320.
MR 0723851
[12] R. D. Martin: Robust estimation for time series autoregressions. In: Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
[13] C. J. Masreliez:
Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control AC-20 (1975), 107-110.
Zbl 0298.93018
[14] C. J. Masreliez, R. D. Martin:
Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1977), 361 - 371.
MR 0453124 |
Zbl 0354.93054
[15] R. J. Meinhold, N. D. Singpurwalla:
Robustification of Kalman filter models. J. Amer. Statist. Assoc. 84 (1989), 479-486.
MR 1010336
[16] M. Pantel: Adaptive Verfahren der stochastischen Approximation. Dissertation, Universitiit Essen 1979.
[17] D. Peňa, J. Guttman:
Optimal collapsing of mixture distributions in robust recursive estimation. Comm. Statist. Theory Methods 18 (1989), 817-833.
MR 1001623
[18] B. T. Polyak, Ya. Z. Tsypkin:
Adaptive estimation algorithms: convergence, optimality, stability (in Russian). Avtomat. Telemekh. (1979), 3, 71-84.
MR 0544876
[19] B. T. Polyak, Ya. Z. Tsypkin:
Optimal methods of estimation of autoregressive parameters under incomplete information (in Russian). Tekh. kibernet. (1983), 1, 118-126.
MR 0736269
[20] H. Robbins, D. Siegmund:
A convergence theorem for non negative almost supermartingales and some applications. In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, New York 1971, pp. 233 - 257.
MR 0343355 |
Zbl 0286.60025
[21] L. D. Servi, Y. C. Ho:
Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans. Automat. Control AC-26 (1981), 563-565.
MR 0613583 |
Zbl 0475.93065
[22] N. Stockinger, R. Dutter:
Robust Time Series Analysis: A Survey. Supplement to Kybernetika vol. 23 (1987).
MR 0921397 |
Zbl 0652.62088
[23] Yu. Sh. Verulava:
Convergence of a stochastic approximation algorithm for estimating an autoregressive parameter (in Russian). Avtomat. Telemekh. (1981), 7, 115-119.
MR 0647669