[3] CI. Deniau G. Oppenheim, M. CI. Viano:
Préservation de la minimalité par échantillonnage aléatoire. C. R. Acad. Sci. Paris Sér. I. Math. 299 (1984), 1001-1004.
MR 0774689
[4] CI. Deniau G. Oppenheim, M. CI. Viano: Time random sampling. Prepublication 86 T Université Paris Sud, 1986. Submitted to publication.
[5] N. Dunford, J. T. Schwartz: Linear Operator, Volume 1. J. Wiley, New York 1957.
[6] G. C. Goodwin, R. L. Payne:
Choice of sampling intervals in systems identification. In: Advances and Case Studies (R. K. Mehra, D. G. Lainiotis, eds.), Academic Press, New York 1976.
MR 0688681
[7] P. Mac-Dunnough, D. Wolfson:
On some sampling schemes for estimating the parameter of continuous time series. Ann. Inst. Statist. Math. 31 (1979), part A, 487-497.
MR 0574824
[8] G. Oppenheim:
Echantillonnage aléatoire d'un processus ARMA. C. R. Acad. Sci. Paris Ser. I. Math. 295 (1982), 403-406.
MR 0684736 |
Zbl 0514.60044
[9] G. Oppenheim: These d'Etat. Université Paris V, 1983.
[10] J. C. Pomerol:
Application de la programmation convexe a la programmation différentiable. C. R. Acad. Sci. Paris Sér. I. Math. 288 (1979), 1041-1044.
MR 0540387 |
Zbl 0425.49028
[11] P. M. Robinson:
Continuous models fitting from discrete data. In: Direction in Time Series (Brillinger, ed.), 1978, pp. 263-278.
MR 0624656
[12] R. T. Rockafellar:
Directionally lipschitzian functions and sub differential calculus. Proc. London Math. Soc. (3) 39 (1979), 331-335.
MR 0548983
[14] J. Stoyanov:
Problem of estimation in continuous discrete stochatic models. In: Proc. 7th Conf. on Probab. Theory Braşov, 1982 (M. Iosifescu, ed.), Editura Academiei RSR, Bucharest 1984.
MR 0867447
[15] Y. Taga:
The optimal sampling procedure for estimating the mean of stationary Markov processes. Ann. Inst. Statist. MAth 17 (1965), 105 - 112.
MR 0175229 |
Zbl 0161.15802