Previous |  Up |  Next

Article

References:
[1] M. W. Birch: A new proof of the Pearson-Fisher Theorem. Ann. Math. Statist. 35 (1964), 817-824. MR 0169324 | Zbl 0259.62017
[2] J. Burbea, C. R. Rao: Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivariate Anal. 12 (1982), 575-596. MR 0680530 | Zbl 0526.60015
[3] T. M. Cover, J. B. Thomas: Elements of Information Theory. J. Wiley, New York 1991. MR 1122806 | Zbl 0762.94001
[4] I. Csiszár: Generalized entropy and quantization problem. In: Trans. of the Sixth Prague Conference, Academia, Prague 1973, pp. 159-174. MR 0359995
[5] S. G. Ghurye, B. Johnson: Discrete approximations to the information integral. Canad. J. Statist. 9 (1981), 27-37. MR 0638384 | Zbl 0473.62007
[6] D. Morales L. Pardo M. Salicrú, M. L. Menéndez: Information measures associated to R-divergences. In: Multivariate analysis: Future directions 2. (C. M. Cuadras and C. R. Rao, eds.) Elsevier Science Publishers, B. V. 1982.
[7] M. Salicrú M. L. Menéndez L. Pardo, D. Morales: Asymptotic distribution of $(h,\phi)$-entropies. Comm. Statist. A -- Theory Methods (to appear). MR 1238377
[8] I. J. Taneja: On generalized information measures and their applications. Adv. Elect. and Elect. Phys. 76 (1989), 327-413.
[9] I. Vajda, K. Vašek: Majorization, concave entropies and comparison of experiments. Problems Control Inform. Theory 14 (1985), 105-115. MR 0806056
[10] K. Zografos K. Ferentinos, T. Papaioannou: Discrete approximations to the Csiszár, Rényi, and Fisher measures of information. Canadian J. Statist. 14 (1986), 4, 355-366. MR 0876762
Partner of
EuDML logo