[1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie. Tenbner, Leipzig, 1894.
[3] Bilu Yu., Hanrot G., Vouter P. M.:
Existence of primitive divisors of Lucas and Lehmer numbers. (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122.
MR 1863855
[4] Crandall R., Pomerance C.:
Prince Numbers. A Computational Perspective, Springer-Verlag, New York, 2001.
MR 1821158
[5] Dickson L. E.: History of the Theory of Numbers, Vol. I. Chelsea Publishing Company, New York, 1952.
[7] Erdös P., Kiss P., Sárközy A.:
Lower bound for the counting function. Math. Comp. 51 (1988), 315-323.
MR 0942158
[9] Meyer A.: Ueber einen Satz von Dinchlet. J. reine angew. Math. 103 (1888), 98-117.
[10] Narkiewicz W.:
The Development of Prime Number Theory: from Euclid to Hardy and Littlewood. Springer, 2000.
MR 1756780 |
Zbl 0942.11002
[11] Rotkiewicz A.:
On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354.
MR 0309843 |
Zbl 0249.10012
[12] Rotkiewicz A.:
On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression. Math. Comp. 39 (1982), 239-247.
MR 0658229
[13] Rotkoewicz A.:
On strong pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arith. 68 (1994), 145-151.
MR 1305197
[14] Rotkiewicz A.:
On Lucas pseudoprimes of the form $ax\sp 2+bxy+cy\sp 2$. Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421.
MR 1393474 |
Zbl 0852.11006
[15] Rotkiewicz A., A. Schinzel:
Sur les nombres pseudopremiers de la forme $ax\sp 2+bxy+cy\sp 2$. C.R. Acad. Sci. Paris, 258 (1964), 3617-3620.
MR 0161828
[16] Rotkiewicz A., Schinzel A.:
On Lucas pseudoprimes with a prescribed value of the Jacobi symbol. Bull. Polish Acad. Sci. Math. 48 (2000), 77-80.
MR 1751157 |
Zbl 0951.11002
[17] Schinzel A.:
On primitive prime factors of $a^n - b^n$. Proc. Cambridge Philos. Soc. 58 (1962), 555-562.
MR 0143728
[18] Schnitzel A.:
The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Math. 4 (1962), 413-416.
DOI 10.1007/BF02591623 |
MR 0139567
[19] Stewart C. L.:
Primitive divisors of Lucas and Lehmer sequences. Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92.
MR 0476628