Previous |  Up |  Next

Article

References:
[1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie. Tenbner, Leipzig, 1894.
[2] Baillie R., Wagstaff, Jr. S.: Lucas pseudoprimes. Math. Comp. 35 (1980), 1391-1417. DOI 10.1090/S0025-5718-1980-0583518-6 | MR 0583518 | Zbl 0458.10003
[3] Bilu Yu., Hanrot G., Vouter P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. MR 1863855
[4] Crandall R., Pomerance C.: Prince Numbers. A Computational Perspective, Springer-Verlag, New York, 2001. MR 1821158
[5] Dickson L. E.: History of the Theory of Numbers, Vol. I. Chelsea Publishing Company, New York, 1952.
[6] Durst L. K.: Exceptional real Lehmer sequences. Pacific J. Math. 9 (1959), 437-441. DOI 10.2140/pjm.1959.9.437 | MR 0108465 | Zbl 0091.04204
[7] Erdös P., Kiss P., Sárközy A.: Lower bound for the counting function. Math. Comp. 51 (1988), 315-323. MR 0942158
[8] Lehmer D. H.: An extended theory of Lucas functions. Ann. of Math. (2) 31 (1930), 419-448. DOI 10.2307/1968235 | MR 1502953
[9] Meyer A.: Ueber einen Satz von Dinchlet. J. reine angew. Math. 103 (1888), 98-117.
[10] Narkiewicz W.: The Development of Prime Number Theory: from Euclid to Hardy and Littlewood. Springer, 2000. MR 1756780 | Zbl 0942.11002
[11] Rotkiewicz A.: On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. MR 0309843 | Zbl 0249.10012
[12] Rotkiewicz A.: On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression. Math. Comp. 39 (1982), 239-247. MR 0658229
[13] Rotkoewicz A.: On strong pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arith. 68 (1994), 145-151. MR 1305197
[14] Rotkiewicz A.: On Lucas pseudoprimes of the form $ax\sp 2+bxy+cy\sp 2$. Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. MR 1393474 | Zbl 0852.11006
[15] Rotkiewicz A., A. Schinzel: Sur les nombres pseudopremiers de la forme $ax\sp 2+bxy+cy\sp 2$. C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. MR 0161828
[16] Rotkiewicz A., Schinzel A.: On Lucas pseudoprimes with a prescribed value of the Jacobi symbol. Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. MR 1751157 | Zbl 0951.11002
[17] Schinzel A.: On primitive prime factors of $a^n - b^n$. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. MR 0143728
[18] Schnitzel A.: The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Math. 4 (1962), 413-416. DOI 10.1007/BF02591623 | MR 0139567
[19] Stewart C. L.: Primitive divisors of Lucas and Lehmer sequences. Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. MR 0476628
[20] Ward M.: The intrinsic divisor of Lehmer numbers. Ann. of Math. (2) 62 (1955), 230-236. DOI 10.2307/1969677 | MR 0071446
Partner of
EuDML logo