Previous |  Up |  Next

Article

References:
[1] Andres J.: A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray. Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. MR 1664285 | Zbl 0964.34030
[2] Andres J.: Multiple bounded solutions of differential inclusions: the Nielsen theory approach. J. Diff. Eqs. 155 (1999), 285-320. MR 1698556 | Zbl 0940.34008
[3] Andres J., Górniewicz L.: From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory. Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. MR 1766189 | Zbl 0958.34015
[4] Andres J., Górniewicz L., Jezierski J.: A generalized Nielsen number and multiplicity results for differential inclusion. Topol. Appl. 100 (2000), 143-209. MR 1733044
[5] Borsuk K.: Theory of Retracts. PWN, Warsaw, 1967. MR 0216473 | Zbl 0153.52905
[6] Brown R. F.: On the Nielsen fixed point theorem for compact maps. Duke. Math. J., 1968, 699-708. MR 0250290
[7] Brown R. F.: Topological identification of multiple solutions to parametrized nonlinear equations. Pacific J. Math. 131 (1988), 51-69. MR 0917865 | Zbl 0615.47042
[8] Brown R. F.: Nielsen fixed point theory and parametrized differential equations. In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. MR 0956478
[9] Cecchi M., Furi M., Marini M.: About the solvability of ordinary differential equations with assymptotic boundary conditions. Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. MR 0805224
[10] Fečkan M.: Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey. In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. MR 1766782
[11] Granas A.: The Leray-Schauder index and the fixed point theory for arbitrary ANRs. Bull. Soc. Math. France 100 (1972), 209-228. MR 0309102 | Zbl 0236.55004
[12] Krasnosel’skij M. A.: The Operator of Translation along Trajectories of Differential Equations. Nauka, Moscow, 1966 (in Russian).
Partner of
EuDML logo