Previous |  Up |  Next

Article

References:
[1] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariant. Ann. Mat., Pure ed Appl. 123, 4 (1980), 35-58. MR 0581924
[2] Hervella L. M., Vidal E.: Novelles géométries pseudo-Kählériennes G1 et G2. C. R. Acad. Sci. Paris 283 (1976), 115-118. MR 0431008
[3] Gray A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141 (1969), 465-504. MR 0243469 | Zbl 0182.24603
[4] Gray A.: Some examples of almost Hermitian manifolds. Ill. J. Math. 10, 2 (1966), 353-366. MR 0190879 | Zbl 0183.50803
[5] Vaisman I.: On locally conformal almost Kähler manifolds. Israel J. Math. 24 (1976), 338-351. MR 0418003 | Zbl 0335.53055
[6] Kirichenko V. F.: On nearly-Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Vestnik MGU 3 (1973), 70-75.
[7] Kirichenko V. F.: Classification of Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Izvestia Vuzov, Kazan, 8 (1980), 32-38. MR 0594496
[8] Kirichenko V. F.: Rigidity of almost Hermitian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Ukrain Geom. Coll. 25 (1982), 60-68. MR 0687202
[9] Freudenthal H.: Octaves, singular groups and octaves geometry. Coll. Math., Moscow, 1957, 117-153.
[10] Lichnerovicz A.: Théorie globale des connexions et des groupes d’holonomie. Cremonese, Roma, 1955.
[11] Cartan E.: Riemannian geometry in an orthogonal frame. MGU, Moscow, 1960.
[12] Banaru M.: Hermitian geometry of six-dimensional submanifolds of Cayley algebra. MSPU, Moscow, 1993.
[13] Banaru M.: On almost Hermitian structures induced by 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Polyanalytical Functions, Smolensk, 1997, 113-117.
Partner of
EuDML logo