[1] Darnel M. R.:
Theory of Lattice-Ordered Groups. Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995.
MR 1304052 |
Zbl 0810.06016
[2] Chang C. C.:
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88, 467-490.
MR 0094302
[3] Cignoli R. L. O., D’Ottaviano I. M. L., Mundici D.:
Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097 |
Zbl 0937.06009
[4] Dvurečenskij A.:
Pseudo MV-algebras are intervals in l-groups. J. Austral. Math. Soc. (Ser. A) (to appear).
MR 1902211
[5] Dvurečenskij A., Pulmannová S.:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1861369
[6] Georgescu G., Iorgulescu A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras. In.: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, 961-968.
[7] Georgescu G., Iorgulescu A.:
Pseudo-MV algebras. Multiple Valued Logic 6 (2001), 95-135.
MR 1817439 |
Zbl 1014.06008
[8] Rachůnek J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. (to appear).
MR 1905434 |
Zbl 1012.06012
[9] Rachůnek J.:
Prime spectra of non-commutative generalizations of MV-algebras. (submitted).
Zbl 1058.06015