Previous |  Up |  Next

Article

Keywords:
global asymptotic stability; half-linear differential systems; growth conditions; eigenvalue
Summary:
This paper is concerned with the global asymptotic stability of the zero solution of the half-linear differential system \[ x^{\prime } = -\,e(t)x + f(t)\phi _{p^*}\!(y)\,,\quad y^{\prime } = -\,g(t)\phi _p(x) - h(t)y\,, \] where $p > 1$, $p^* > 1$ ($1/p + 1/p^* = 1$), and $\phi _q(z) = |z|^{q-2}z$ for $q = p$ or $q = p^*$. The coefficients are not assumed to be positive. This system includes the linear differential system $\mathbf{x}^{\prime } = A(t)\mathbf{x}$ with $A(t)$ being a $2 \times 2$ matrix as a special case. Our results are new even in the linear case ($p = p^*\! = 2$). Our results also answer the question whether the zero solution of the linear system is asymptotically stable even when Coppel’s condition does not hold and the real part of every eigenvalue of $A(t)$ is not always negative for $t$ sufficiently large. Some suitable examples are included to illustrate our results.
References:
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. MR 2091751 | Zbl 1073.34002
[2] Bihari, I.: On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437. MR 0267190 | Zbl 0167.37403
[3] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Heath, Boston, 1965. MR 0190463 | Zbl 0154.09301
[4] Desoer, C. A.: Slowly varying system $\dot{x}=A(t)x$. IEEE Trans. Automat. Control AC-14 (1969), 780–781. DOI 10.1109/TAC.1969.1099336 | MR 0276562
[5] Dickerson, J. R.: Stability of linear systems with parametric excitation. Trans. ASME Ser. E J. Appl. Mech. 37 (1970), 228–230. DOI 10.1115/1.3408450 | MR 0274876 | Zbl 0215.44602
[6] Došlý, O., Řehák, P.: Half-linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903
[7] Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York. MR 0693113 | Zbl 0528.34034
[8] Elbert, Á.: A half-linear second order differential equation. Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180. MR 0680591 | Zbl 0511.34006
[9] Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. MR 0874513 | Zbl 0629.34066
[10] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25 (1995), 991–1002. DOI 10.1016/0362-546X(95)00093-B | MR 1350721 | Zbl 0844.34050
[11] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Amer. Math. Soc. 124 (1996), 415–422. DOI 10.1090/S0002-9939-96-03266-2 | MR 1317039 | Zbl 0844.34051
[12] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995), 209–223. DOI 10.1006/jdeq.1995.1087 | MR 1334491 | Zbl 0831.34052
[13] Hatvani, L., Totik, V.: Asymptotic stability for the equilibrium of the damped oscillator. Differential Integral Equations 6 (1993), 835–848. MR 1222304
[14] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. DOI 10.1007/BF03322729 | MR 1962855 | Zbl 1047.34034
[15] LaSalle, J. P., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications. Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961. MR 0132876
[16] Li, H.-J., Yeh, C.-C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204. MR 1362999 | Zbl 0873.34020
[17] Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12 (1960), 305–317. MR 0126019 | Zbl 0096.28802
[18] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. DOI 10.1016/0022-247X(76)90120-7 | MR 0402184 | Zbl 0327.34027
[19] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994), 815–835. DOI 10.1137/S0036141092240679 | MR 1271312 | Zbl 0809.34067
[20] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. MR 0450715 | Zbl 0364.34022
[21] Sugie, J., Onitsuka, M., Yamaguchi, A.: Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Sci. Math. Hungar. 44 (2007), 159–189. MR 2325518 | Zbl 1174.34042
[22] Sugie, J., Yamaoka, N.: Comparison theorems for oscillation of second-order half-linear differential equations. Acta Math. Hungar. 111 (2006), 165–179. DOI 10.1007/s10474-006-0029-5 | MR 2188979 | Zbl 1116.34030
[23] Vinograd, R. E.: On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations. Dokl. Akad. Nauk 84 (1952), 201–204. MR 0050749
[24] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Math. Society Japan, Tokyo (1966). MR 0208086
[25] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems. Pergamon Press, New-York-Oxford-London-Paris, 1962. MR 0151695 | Zbl 0103.06001
Partner of
EuDML logo