[1] Agarwal, R. P., Grace, S. R., O’Regan, D.:
Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
MR 2091751 |
Zbl 1073.34002
[2] Bihari, I.:
On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437.
MR 0267190 |
Zbl 0167.37403
[3] Coppel, W. A.:
Stability and Asymptotic Behavior of Differential Equations. Heath, Boston, 1965.
MR 0190463 |
Zbl 0154.09301
[6] Došlý, O., Řehák, P.:
Half-linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005.
MR 2158903
[7] Elbert, Á.:
Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York.
MR 0693113 |
Zbl 0528.34034
[8] Elbert, Á.:
A half-linear second order differential equation. Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180.
MR 0680591 |
Zbl 0511.34006
[9] Elbert, Á.:
Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464.
MR 0874513 |
Zbl 0629.34066
[13] Hatvani, L., Totik, V.:
Asymptotic stability for the equilibrium of the damped oscillator. Differential Integral Equations 6 (1993), 835–848.
MR 1222304
[14] Jaroš, J., Kusano, T., Tanigawa, T.:
Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149.
DOI 10.1007/BF03322729 |
MR 1962855 |
Zbl 1047.34034
[15] LaSalle, J. P., Lefschetz, S.:
Stability by Liapunov’s Direct Method, with Applications. Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961.
MR 0132876
[16] Li, H.-J., Yeh, C.-C.:
Sturmian comparison theorem for half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204.
MR 1362999 |
Zbl 0873.34020
[17] Markus, L., Yamabe, H.:
Global stability criteria for differential systems. Osaka Math. J. 12 (1960), 305–317.
MR 0126019 |
Zbl 0096.28802
[20] Rouche, N., Habets, P., Laloy, M.:
Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
MR 0450715 |
Zbl 0364.34022
[21] Sugie, J., Onitsuka, M., Yamaguchi, A.:
Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Sci. Math. Hungar. 44 (2007), 159–189.
MR 2325518 |
Zbl 1174.34042
[23] Vinograd, R. E.:
On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations. Dokl. Akad. Nauk 84 (1952), 201–204.
MR 0050749
[24] Yoshizawa, T.:
Stability Theory by Liapunov’s Second Method. Math. Society Japan, Tokyo (1966).
MR 0208086
[25] Zubov, V. I.:
Mathematical Methods for the Study of Automatic Control Systems. Pergamon Press, New-York-Oxford-London-Paris, 1962.
MR 0151695 |
Zbl 0103.06001