Previous |  Up |  Next

Article

Keywords:
duffing equation; integral boundary conditions; quasilinearization; quadratic convergence
Summary:
A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.
References:
[1] Ahmad, B.: A quasilinearization method for a class of integro-differential equations with mixed nonlinearities. Nonlinear Anal. Real World Appl. 7 (2006), 997–1004. MR 2260894 | Zbl 1111.45005
[2] Ahmad, B., Alsaedi, A.: Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Anal. Real World Appl. 10 (2009), 358–367. MR 2451715 | Zbl 1154.34314
[3] Ahmad, B., Alsaedi, A., Alghamdi, B.: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 9 (2008), 1727–1740. MR 2422576 | Zbl 1154.34311
[4] Ahmad, B., Naz, U., Khan, R. A.: A higher order monotone iterative scheme for nonlinear Neumann boundary value problems. Bull. Korean Math. Soc. 42 (2005), 17–22. DOI 10.4134/BKMS.2005.42.1.017 | MR 2122762 | Zbl 1090.34510
[5] Ahmad, B., Nieto, J. J.: The monotone iterative technique for three-point second-order integrodifferential boundary value problems with p-Laplacian. Boundary Value Problems 2007 (2007), 9pp., Article ID 57481, doi: 10.1155/2007/57481. MR 2320689 | Zbl 1149.65098
[6] Ahmad, B., Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69 (2008), 3291–3298. MR 2450538 | Zbl 1158.34049
[7] Ahmad, B., Nieto, J. J., Shahzad, N.: The Bellman-Kalaba-Lakshmikantham quasilinearization method for Neumann problems. J. Math. Anal. Appl. 257 (2001), 356–363. DOI 10.1006/jmaa.2000.7352 | MR 1827327
[8] Ahmad, B., Sivasundaram, S.: The monotone iterative technique for impulsive hybrid set valued integro-differential equations. Nonlinear Anal. 65 (2006), 2260–2276. DOI 10.1016/j.na.2006.01.033 | MR 2267622 | Zbl 1111.45006
[9] Bellman, R., Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems. Amer. Elsevier, New York, 1965. MR 0178571 | Zbl 0139.10702
[10] Bouziani, A., Benouar, N. E.: Mixed problem with integral conditions for a third order parabolic equation. Kobe J. Math. 15 (1998), 47–58. MR 1654526 | Zbl 0921.35068
[11] Cabada, A., Nieto, J. J.: Rapid convergence of the iterative technique for first order initial value problems. Appl. Math. Comput. 87 (1997), 217–226. DOI 10.1016/S0096-3003(96)00285-8 | MR 1468300 | Zbl 0904.65067
[12] Cannon, J. R.: Encyclopedia of Math. and its Appl. ch. The one-dimensional heat equation, Addison-Wesley, Mento Park, CA, 1984. MR 0747979
[13] Cannon, J. R., Esteva, S. Perez, Hoek, J. Van Der: A Galerkin procedure for the diffusion equation subject to the specification of mass. SIAM. J. Numer. Anal. 24 (1987), 499–515. DOI 10.1137/0724036 | MR 0888747
[14] Choi, Y. S., Chan, K. Y.: A parabolic equation with nonlocal boundary conditions arising from electrochemistry. Nonlinear Anal. 18 (1992), 317–331. DOI 10.1016/0362-546X(92)90148-8 | MR 1150422 | Zbl 0757.35031
[15] Denche, M., Marhoune, A. L.: Mixed problem with integral boundary condition for a high order mixed type partial differential equation. J. Appl. Math. Stoch. Anal. 16 (2003), 69–79. DOI 10.1155/S1048953303000054 | MR 1973079 | Zbl 1035.35085
[16] Ewing, R. E., Lin, T.: A class of parameter estimation techniques for fluid flow in porous media. Adv. Water Res. 14 (1991), 89–97. DOI 10.1016/0309-1708(91)90055-S | MR 1108193
[17] Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2 (1999), 75–83. DOI 10.1007/s007910050030 | Zbl 1067.76624
[18] Ionkin, N. I.: Solution of a boundary value problem in heat condition with a nonclassical boundary condition. Differ. Uravn. 13 (1977), 294–304. MR 0603291
[19] Kartynnik, A. V.: Three-point boundary value problem with an integral space-variable condition for a second-order parabolic equation. Differential Equations 26 (1990), 1160–1166. MR 1080432 | Zbl 0729.35053
[20] Ladde, G. S., Lakshmikantham, V., Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. MR 0855240 | Zbl 0658.35003
[21] Lakshmikantham, V., Nieto, J. J.: Generalized quasilinearization for nonlinear first order ordinary differential equations. Nonlinear Times & Digest 2 (1995), 1–10. MR 1333329 | Zbl 0855.34013
[22] Lakshmikantham, V., Vatsala, A. S.: Mathematics and its Applications, 440. ch. Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1998. MR 1640601
[23] Nieto, J. J., Rodriguez-Lopez, R.: Monotone method for first-order functional differential equations. Comput. Math. Appl. 52 (2006), 471–484. DOI 10.1016/j.camwa.2006.01.012 | MR 2263515 | Zbl 1140.34406
[24] Shi, P.: Weak solution to evolution problem with a nonlocal constraint. SIAM J. Math. Anal. 24 (1993), 46–58. DOI 10.1137/0524004 | MR 1199526
[25] Vatsala, A. S., Yang, J.: Monotone iterative technique for semilinear elliptic systems. Boundary Value Probl. 2 (2005), 93–106. MR 2198745 | Zbl 1143.65388
[26] Yurchuk, N. I.: Mixed problem with an integral condition for certain parabolic equations. Differential Equations 22 (1986), 1457–1463. MR 0880769 | Zbl 0654.35041
Partner of
EuDML logo