Previous |  Up |  Next

Article

Keywords:
corps biquadratiques cycliques; groupe de classes; capitulation; corps de classes de Hilbert
Summary:
Let $K=k\big (\sqrt{-p{\varepsilon }\sqrt{l}}\big )$ with $k={\mathbb{Q}}(\sqrt{l})$ where $l$ is a prime number such that $l=2$ or $l\equiv 5\;\@mod \;8$, $\varepsilon $ the fundamental unit of $k$, $p$ a prime number such that $p\equiv 1\;\@mod \;4$ and ${(\frac{p}{l})}_4=-1$, $K_2^{(1)}$ the Hilbert $2$-class field of $K$, $K_2^{(2)}$ the Hilbert $2$-class field of $K_2^{(1)}$ and $G=\operatorname{Gal\,}(K_2^{(2)}/K)$ the Galois group of $K_2^{(2)}/K$. According to E. Brown and C. J. Parry [7] and [8], $C_{2,K}$, the Sylow $2$-subgroup of the ideal class group of $K$, is isomorphic to ${\mathbb{Z}}/2{\mathbb{Z}}\times {\mathbb{Z}}/{2\mathbb{Z}}$, consequently $K_2^{(1)}/K$ contains three extensions $F_i/K$ $(i=1,2,3)$ and the tower of the Hilbert $2$-class field of $K$ terminates at either $K_2^{(1)}$ or $K_2^{(2)}$. In this work, we are interested in the problem of capitulation of the classes of $C_{2,K}$ in $F_i$ $(i=1,2,3)$ and to determine the structure of $G$. Résumé. Soient $K=k(\sqrt{-p{\varepsilon }\sqrt{l}})$ avec $k=\mathbb{Q}(\sqrt{l})$ où $l$ est un nombre premier tel que $l=2$ ou $l\equiv 5\;\@mod \;8$, $\varepsilon $ l’unité fondamentale de $k$, $p$ un nombre premier tels que $p\equiv 1\;\@mod \;4$ et ${(\frac{p}{l})}_4=-1$, $K_2^{(1)}$ le $2$-corps de classes de Hilbert de $K$, $K_2^{(2)}$ le $2$-corps de classes de Hilbert de $K_2^{(1)}$ et $G=\operatorname{Gal\,}(K_2^{(2)}/K)$ le groupe de Galois de $K_2^{(2)}/K$. D’après E. Brown et C. J. Parry [7] et [8], $C_{2,K}$, le $2$-groupe de classes de $K$, est isomorphe à $\mathbb{Z}/{2\mathbb{Z}}\times \mathbb{Z}/{2\mathbb{Z}}$, par conséquent $K_2^{(1)}/K$ contient trois extensions $F_i/K$ $(i=1,2,3)$ et la tour des $2$-corps de classes de Hilbert de $K$ s’arrête en $K_2^{(1)}$ ou en $K_2^{(2)}$. Dans ce travail, on s’intéresse au problème de capitulation des classes de $C_{2,K}$ dans $F_i$ $(i=1,2,3)$ et à déterminer la structure de $G$.
References:
[1] Azizi, A.: Capitulation des $2$-classes d’idéaux de ${\mathbb{Q}}(\sqrt{d},i)$. C. R. Acad. Sci. Paris Sér. I Math. 325 (2) (1997), 127–130. MR 1467063
[2] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$. Ann. Sci. Math. Québec 23 (1999), 87–93. MR 1721726
[3] Azizi, A.: Capitulation des $2$-classes d’idéaux de ${\mathbb{Q}}(\sqrt{2pq},i)$. Acta Arith. 94 (2000), 383–399. MR 1779950
[4] Azizi, A.: Sur une question de capitulation. Proc. Amer. Math. Soc. 130 (2002), 2197–2002. DOI 10.1090/S0002-9939-02-06424-9 | MR 1897477 | Zbl 1010.11061
[5] Azizi, A.: Sur les unités de certains corps de nombres de degré $8$ sur $\mathbb{Q}$. Ann. Sci. Math. Québec 29 (2005), 111–129. MR 2309703
[6] Azizi, A., Talbi, M.: Capitulation des $2$-classes d’idéaux de certains corps biquadratiques cycliques. Acta Arith. 127 (2007), 231–248. DOI 10.4064/aa127-3-3 | MR 2310345 | Zbl 1169.11049
[7] Brown, E., Parry, C. J.: The $2$-class group of certain biquadratic number fields I. J. Reine Angew. Math. 295 (1977), 61–71. MR 0457398
[8] Brown, E., Parry, C. J.: The $2$-class group of certain biquadratic number fields II. Pacific J. Math. 78 (1) (1978), 11–26. DOI 10.2140/pjm.1978.78.11 | MR 0513279
[9] Conner, P. E., Hurrelbrink, J.: Class number parity. Ser. Pure Math., 8, World Sci, 1988. DOI 10.1142/0663 | MR 0963648 | Zbl 0743.11061
[10] Hasse, H.: Neue Begründung der Theorie des Normenrestsymbols. J. Reine Angew. Math. 162 (1930), 134–143.
[11] Heider, F. P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 366 (1982), 1–25. MR 0671319 | Zbl 0505.12016
[12] Ishida, M.: The genus fields of algebraic number fields. Lecture Notes in Math. 555 (1976). MR 0435028 | Zbl 0353.12001
[13] Kaplan, P.: Sur le $2$-groupe des classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976), 313–363. MR 0404206 | Zbl 0337.12003
[14] Kisilevsky, H.: Number fields with class number congruent to $4$ modulo $8$ and Hilbert’s theorem $94$. J. Number Theory 8 (1976), 271–279. DOI 10.1016/0022-314X(76)90004-4 | MR 0417128
[15] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 (1956), 65–85. MR 0083009 | Zbl 0074.03001
[16] Kučera, R.: On the parity of the class number of biquadratic field. J. Number Theory 52 (1995), 43–52. DOI 10.1006/jnth.1995.1054
[17] Kuroda, S.: Über den Dirichletschen Zahlkörper. Fac. Sci. Imp. Univ. Tokyo Sec. I 4 (1943), 383–406. MR 0021031
[18] Lemmermeyer, F.: Kuroda’s class number formula. Acta Arith. 66 (3) (1994), 245–260. MR 1276992 | Zbl 0807.11052
[19] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201–209. MR 0214565 | Zbl 0158.30103
Partner of
EuDML logo