Previous |  Up |  Next

Article

Keywords:
algebra of real-valued functions; evaluating linear functional; homomorphism; Lindelöf space
Summary:
This work provides an evaluating complete description of positive homomorphisms on an arbitrary algebra of real-valued functions.
References:
[1] Biström, P., Bjon, S., Lindström, M.: Remarks on homomorphisms on certain subalgebras of $C( X) $. Math. Japon. 37 (1992), 105–109. MR 1148522 | Zbl 0798.46016
[2] Blasco, J. L.: On the structure of positive homomorphisms on algebras of real-valued functions. Acta Math. Hungar. 102 (2004), 141–150. DOI 10.1023/B:AMHU.0000023212.91183.38 | MR 2038174
[3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras. Springer Verlag, Berlin–Heidelberg–New York, 1973. MR 0423029 | Zbl 0271.46039
[4] Garrido, I., Gómez, J., Jaramillo, J.: Homomorphisms on functions algebras. Canad. J. Math. 46 (1994), 734–745. DOI 10.4153/CJM-1994-041-3 | MR 1289057
[5] Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer Verlag, Berlin–Heidelberg–New York, 1976. MR 0407579 | Zbl 0327.46040
[6] Isbell, J.: Algebra of uniformly continuous functions. Ann. Math. 68 (1958), 96–125. DOI 10.2307/1970045 | MR 0103407
[7] Kriegl, A., Michor, P. W.: The Convenient Setting of Global Analysis. Math. Surveys Monogr., 1997. MR 1471480 | Zbl 0889.58001
[8] Steen, L. A., Seebach, J. A.: Counterexamples in Topology. Springer Verlag, Berlin–Heidelberg–New York, 1978. MR 0507446 | Zbl 0386.54001
Partner of
EuDML logo