[1] Arhangel'skii A.V., Ranchin D.V.:
Everywhere dense subspaces of topological products and properties associated with final compactness. Vestnik Moskov. Univ. Ser. I Mat. Meh. (1982), 6 21-28.
MR 0685258
[4] Comfort W.W., Negrepontis S.:
The Theory of Ultrafilters. Springer, New York, Heidelberg, Berlin, 1974.
MR 0396267 |
Zbl 0298.02004
[5] de Leo L., Tkachenko M.G.: The maximal $ømega $-narrow group topology on Abelian groups. Houston J. Math., to appear.
[6] Efimov B.A.:
Dyadic compacta. Trudy Moskov. Mat. Obshch. 14 (1965), 211-247 (in Russian).
MR 0202105
[7] Frolík Z.:
Generalizations of compactness and the Lindelöf property. Czechoslovak Math. J. 9 (84) (1959), 172-211.
MR 0105075
[8] Frolík Z.:
The topological product of two pseudocompact spaces. Czechoslovak Math. J. 10 (1960), 339-349.
MR 0116304
[9] Glicksberg I.:
Stone-Čech compactifications of products. Trans. Amer. Math. Soc. 90 (1959), 369-382.
MR 0105667 |
Zbl 0089.38702
[10] Guran I.:
On topological groups close to being Lindelöf. Soviet Math. Dokl. 23 (1981), 173-175.
Zbl 0478.22002
[11] Hernández C., Tkachenko M.G.:
Subgroups and products of $\Bbb R$-factorizable groups. Comment. Math. Univ. Carolin. 45 1 (2004), 153-167.
MR 2076867
[13] Kombarov A.P., Malykhin V.I.:
On $\Sigma$-products. Dokl. Akad. Nauk SSSR 213 4 (1973), 774-776 (in Russian).
MR 0339073
[15] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups. Russian Math. Surveys 31 (1976), 19-30.
[16] Tkachenko M.G.:
Some results on inverse spectra I. Comment. Math. Univ. Carolin. 22 3 (1981), 621-633.
MR 0633589 |
Zbl 0478.54005
[18] Tkachenko M.G.:
Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable. Comment. Math. Univ. Carolin. 42 3 (2001), 551-559.
MR 1860244 |
Zbl 1053.54045
[20] Uspenskij V.V.:
On continuous images of Lindelöf topological groups. Soviet Math. Dokl. 32 (1985), 802-806.
MR 0821360 |
Zbl 0602.22003
[21] Uspenskij V.V.:
Topological groups and Dugundji compacta. Math. USSR Sbornik 67 (1990), 555-580; Russian original in Mat. Sbornik 180 (1989), 1092-1118.
MR 1019483 |
Zbl 0702.22002