Previous |  Up |  Next

Article

Keywords:
pseudo-$\aleph_1$-compact space; $\Bbb R$-factorizable group; cellularity; $\sigma$-product
Summary:
We introduce and study, following Z. Frol'{\i}k, the class $\Cal B(\Cal P)$ of regular $P$-spaces $X$ such that the product $X\times Y$ is pseudo-$\aleph_1$-compact, for every regular pseudo-$\aleph_1$-compact $P$-space $Y$. We show that every pseudo-$\aleph_1$-compact space which is locally $\Cal B(\Cal P)$ is in $\Cal B(\Cal P)$ and that every regular Lindelöf $P$-space belongs to $\Cal B(\Cal P)$. It is also proved that all pseudo-$\aleph_1$-compact $P$-groups are in $\Cal B(\Cal P)$. The problem of characterization of subgroups of $\Bbb R$-factor\-izable (equivalently, pseudo-$\aleph_1$-compact) $P$-groups is considered as well. We give some necessary conditions on a topological $P$-group to be a subgroup of an $\Bbb R$-factorizable $P$-group and deduce that there exists an $\omega $-narrow $P$-group that cannot be embedded as a subgroup into any $\Bbb R$-factorizable $P$-group. The class of $\sigma $-products of second-countable topological groups is especially interesting. We prove that {\it all subgroups\/} of the groups in this class are perfectly $\kappa $-normal, $\Bbb R$-factor\-izable, and have countable cellularity. If, in addition, $H$ is a closed subgroup of a $\sigma $-product of second-countable groups, then $H$ is an Efimov space and satisfies $\operatorname{cel}_\omega (H)\leq \omega $.
References:
[1] Arhangel'skii A.V., Ranchin D.V.: Everywhere dense subspaces of topological products and properties associated with final compactness. Vestnik Moskov. Univ. Ser. I Mat. Meh. (1982), 6 21-28. MR 0685258
[2] Blair R.L.: Spaces in which special sets are $z$-embedded. Canad. J. Math. 28 (1976), 673-690. DOI 10.4153/CJM-1976-068-9 | MR 0420542 | Zbl 0359.54009
[3] Comfort W.W.: Compactness-like properties for generalized weak topological sums. Pacific J. Math. 60 (1975), 31-37. DOI 10.2140/pjm.1975.60.31 | MR 0431088 | Zbl 0307.54016
[4] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Springer, New York, Heidelberg, Berlin, 1974. MR 0396267 | Zbl 0298.02004
[5] de Leo L., Tkachenko M.G.: The maximal $ømega $-narrow group topology on Abelian groups. Houston J. Math., to appear.
[6] Efimov B.A.: Dyadic compacta. Trudy Moskov. Mat. Obshch. 14 (1965), 211-247 (in Russian). MR 0202105
[7] Frolík Z.: Generalizations of compactness and the Lindelöf property. Czechoslovak Math. J. 9 (84) (1959), 172-211. MR 0105075
[8] Frolík Z.: The topological product of two pseudocompact spaces. Czechoslovak Math. J. 10 (1960), 339-349. MR 0116304
[9] Glicksberg I.: Stone-Čech compactifications of products. Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 0105667 | Zbl 0089.38702
[10] Guran I.: On topological groups close to being Lindelöf. Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002
[11] Hernández C., Tkachenko M.G.: Subgroups and products of $\Bbb R$-factorizable groups. Comment. Math. Univ. Carolin. 45 1 (2004), 153-167. MR 2076867
[12] Jech T.: Set Theory. Springer Monographs in Mathematics, Springer, Berlin, 2003. MR 1940513 | Zbl 1007.03002
[13] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products. Dokl. Akad. Nauk SSSR 213 4 (1973), 774-776 (in Russian). MR 0339073
[14] Noble N.: Products with closed projections. Trans. Amer. Math. Soc. 140 (1969), 381-391. DOI 10.1090/S0002-9947-1969-0250261-4 | MR 0250261 | Zbl 0192.59701
[15] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups. Russian Math. Surveys 31 (1976), 19-30.
[16] Tkachenko M.G.: Some results on inverse spectra I. Comment. Math. Univ. Carolin. 22 3 (1981), 621-633. MR 0633589 | Zbl 0478.54005
[17] Tkachenko M.G.: Introduction to topological groups. Topology Appl. 86 (1998), 179-231. DOI 10.1016/S0166-8641(98)00051-0 | MR 1623960 | Zbl 0955.54013
[18] Tkachenko M.G.: Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable. Comment. Math. Univ. Carolin. 42 3 (2001), 551-559. MR 1860244 | Zbl 1053.54045
[19] Tkachenko M.G.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups. Topology Appl. 136 (2004), 135-167. DOI 10.1016/S0166-8641(03)00217-7 | MR 2023415 | Zbl 1039.54020
[20] Uspenskij V.V.: On continuous images of Lindelöf topological groups. Soviet Math. Dokl. 32 (1985), 802-806. MR 0821360 | Zbl 0602.22003
[21] Uspenskij V.V.: Topological groups and Dugundji compacta. Math. USSR Sbornik 67 (1990), 555-580; Russian original in Mat. Sbornik 180 (1989), 1092-1118. MR 1019483 | Zbl 0702.22002
Partner of
EuDML logo