[1] Beck J., Chen W.L.:
Irregularities of Distribution. Cambridge University Press, Cambridge, 1987.
MR 0903025 |
Zbl 1156.11029
[3] Davis P.J., Rabinowitz P.:
Methods of Numerical Integration. 2nd edition, Academic Press Inc., Orlando FL, 1984.
MR 0760629 |
Zbl 1139.65016
[4] Faure H.:
Discrepancy of sequences associated with a number system (in dimension $s$). Acta Arith. 41 (1982), 4 337-351.
MR 0677547
[5] Genz A.: Testing multidimensional integration routines. in Tools, Methods and Languages for Scientific and Engineering Computation, B. Ford, J. C. Rault and F. Thomasset, Eds., North-Holland, Amsterdam, 1984.
[6] Hua L.K., Wang Y.:
Applications of Number Theory to Numerical Analysis. Springer, Berlin, 1981.
MR 0617192 |
Zbl 0465.10045
[8] L'Ecuyer P., Lemieux C.: Variance reduction via lattice rules. in Management Science 49-6 (2000), 1214-1235.
[9] Lovász L.:
An algorithmic theory of numbers, graphs and convexity. CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986.
MR 0861822
[10] Matoušek J.:
Geometric Discrepancy: An Illustrated Guide. Springer, Berlin, 1999.
MR 1697825
[12] Niederreiter H.:
Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63, SIAM, Philadelphia, Pennsylvania, 1992.
MR 1172997 |
Zbl 0761.65002
[13] Owen A.B.:
Randomly permuted $(t,m,s)$-nets and $(t,s)$-sequences. in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Harald Niederreiter and Peter Jau-Shyong Shiue, Eds., Springer, New York, 1995, pp. 299-317.
MR 1445791 |
Zbl 0831.65024
[16] Radovic I., Sobol' I.M., Tichy R.F.:
Quasi-Monte Carlo methods for numerical integration: Comparison of different low-discrepancy sequences. Monte Carlo Methods Appl. 2 (1996), 1-14.
MR 1395313 |
Zbl 0851.65015
[17] Roos P., Arnold L.:
Numerische Experimente zur mehrdimensionalen Quadratur. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 172 (1963), 271-286.
MR 0170475 |
Zbl 0128.36902
[18] Skriganov M.M.:
Constructions of uniform distributions in terms of geometry of numbers. Algebra i Analiz 6 (1994), 200-230.
MR 1301838 |
Zbl 0840.11041
[19] Sloan I.H., Joe S.:
Lattice Method for Multiple Integration. Clarendon Press, Oxford University Press, New York, 1994.
MR 1442955
[23] Tezuka S.:
Uniform Random Numbers. Theory and Practice. Kluwer Academic Publishers, Dordrecht, 1995.
Zbl 0841.65004