[2] Cavenagh N.J.:
A uniqueness result for $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 47 (2006), 337-358.
MR 2241536 |
Zbl 1138.05007
[4] Colbourn C.J., Rosa A.:
Triple Systems. Clarendon Press, New York, 1999, ISBN: 0-19-853576-7.
MR 1843379 |
Zbl 1030.05017
[5] Donovan D.M., Drápal A., Lefevre J.G.: Permutation representation of $3$ and $4$-homogeneous Latin bitrades. submitted.
[7] Grannell M.J., Griggs T.S.:
Designs and topology. in Surveys in Combinatorics 2007, London Math. Soc. Lecture Note Series 346, Cambridge University Press, Cambridge, 2007, pp.121-174.
MR 2252792
[9] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of symmetric configurations of triples. Proceedings of MaGiA conference, Kočovce 2004, Slovak University of Technology, 2004, pp.106-112.
[10] Hämäläinen C.:
Partitioning $3$-homogeneous latin bitrades. preprint.
MR 2390076
[11] Kirkman T.P.: On a problem of combinations. Cambridge and Dublin Math. J. 2 (1847), 191-204.
[13] Lefevre J.G., Donovan D.M., Grannell M.J., Griggs T.S.:
A constraint on the biembedding of Latin squares. submitted.
Zbl 1170.05017
[15] Negami S.: Classification of $6$-regular Klein-bottlal graphs. Research Reports on Information Sciences, Department of Information Sciences, Tokyo Institute of Technology A-96 (1984), 16pp.