Previous |  Up |  Next

Article

Keywords:
quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces
Summary:
Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball $\Bbb B^2$ of a Euclidean 2-space $\Bbb R^2$ is presented. This decomplexification proves useful, enabling the resulting real Möbius addition to be generalized into the open unit ball $\Bbb B^n$ of a Euclidean $n$-space $\Bbb R^n$ for all $n\ge2$. Similarly, the decomplexification of the complex $2\times 2$ qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch gyrovector, into an equivalent (in a specified sense) real $4\times 4$ matrix is presented. As in the case of Möbius addition, this decomplexification proves useful, enabling the resulting real matrix to be generalized into a corresponding matrix parametrized by a real, $n$-dimensional Bloch gyrovector, for all $n\ge 2$. The applicability of the $n$-dimensional Bloch gyrovector with $n=3$ to QIC is well known. The problem as to whether the $n$-dimensional Bloch gyrovector with $n>3$ is applicable to QIC as well remains to be explored.
References:
[1] Ahlfors L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. MR 0357743 | Zbl 0272.30012
[2] Altepeter J.B., James D.F.V., Kwiat P.G.: Qubit quantum state tomography. in Quantum State Estimation, Lecture Notes in Phys., vol. 649, Springer, Berlin, 2004, pp.113-145. DOI 10.1007/978-3-540-44481-7_4 | MR 2180163 | Zbl 1092.81511
[3] Arvind, Mallesh K.S., Mukunda N.: A generalized Pancharatnam geometric phase formula for three-level quantum systems. J. Phys. A 30 7 2417-2431 (1997). DOI 10.1088/0305-4470/30/7/021 | MR 1457387
[4] Chen J.-L., Ungar A.A.: The Bloch gyrovector. Found. Phys. 32 4 531-565 (2002). DOI 10.1023/A:1015032332156 | MR 1903786
[5] Chruściński D., Jamiołkowski A.: Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics, vol. 36, Birkhäuser Boston Inc., Boston, MA, 2004.
[6] Feder T.: Strong near subgroups and left gyrogroups. J. Algebra 259 1 177-190 (2003). DOI 10.1016/S0021-8693(02)00536-7 | MR 1953714 | Zbl 1019.20031
[7] Fisher S.D.: Complex Variables. corrected reprint of the second (1990) edition, Dover Publications Inc., Mineola, NY, 1999. MR 1702283 | Zbl 1079.30500
[8] Foguel T., Ungar A.A.: Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3 1 27-46 (2000). DOI 10.1515/jgth.2000.003 | MR 1736515 | Zbl 0944.20053
[9] Foguel T., Ungar A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pacific J. Math 197 1 1-11 (2001). DOI 10.2140/pjm.2001.197.1 | MR 1810204 | Zbl 1066.20068
[10] Greene R.E., Krantz S.G.: Function Theory of One Complex Variable. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1997. MR 1443431 | Zbl 1114.30001
[11] Hausner M.: A Vector Space Approach to Geometry. reprint of the 1965 original, Dover Publications Inc., Mineola, NY, 1998. MR 1651732 | Zbl 0924.51001
[12] James D.F.V., Kwiat P.G., Munro W.J., White A.G.: Volume of the set of separable states. Phys. Rev. A (3) 58 2 883-892 (1998).
[13] Kinyon M.K., Ungar A.A.: The gyro-structure of the complex unit disk. Math. Mag. 73 4 273-284 (2000). DOI 10.2307/2690974 | MR 1822756
[14] Korányi A.: Around the finite-dimensional spectral theorem. Amer. Math. Monthly 108 2 120-125 (2001). DOI 10.2307/2695525 | MR 1818185 | Zbl 1012.15007
[15] Lévay P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A 37 5 1821-1841 (2004). DOI 10.1088/0305-4470/37/5/024 | MR 2044194 | Zbl 1067.81049
[16] Lévay P.: Thomas rotation and the mixed state geometric phase. J. Phys. A 37 16 4593-4605 (2004). DOI 10.1088/0305-4470/37/16/009 | MR 2065947 | Zbl 1062.81067
[17] Marsden J.E.: Elementary Classical Analysis. With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, István Fáry and Robert Gulliver; W.H. Freeman and Co., San Francisco, 1974. MR 0357693
[18] Needham T.: Visual Complex Analysis. The Clarendon Press, Oxford University Press, New York, 1997. MR 1446490 | Zbl 1095.30500
[19] Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000. MR 1796805 | Zbl 1049.81015
[20] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces. Fundamental Theories of Physics, vol. 117, Kluwer Academic Publishers Group, Dordrecht, 2001. MR 1978122 | Zbl 0972.83002
[21] Ungar A.A.: The density matrix for mixed state qubits and hyperbolic geometry. Quantum Inf. Comput. 2 6 513-514 (2002). MR 1945452 | Zbl 1152.81823
[22] Ungar A.A.: The hyperbolic geometric structure of the density matrix for mixed state qubits. Found. Phys. 32 11 1671-1699 2002. DOI 10.1023/A:1021446605657 | MR 1954912
[23] Ungar A.A.: Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. MR 2169236 | Zbl 1089.51003
[24] Ungar A.A.: Gyrogroups, the grouplike loops in the service of hyperbolic geometry and Einstein's special theory of relativity. Quasigroups Related Systems 15 141-168 (2007). MR 2379129 | Zbl 1147.20055
[25] Ungar A.A.: The hyperbolic square and Möbius transformations. Banach J. Math. Anal. 1 1 101-116 (2007). MR 2350199 | Zbl 1129.30027
[26] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2169236 | Zbl 1147.83004
[27] Ungar A.A.: From Möbius to gyrogroups. Amer. Math. Monthly 115 2 138-144 (2008). MR 2384266 | Zbl 1152.30045
[28] Urbantke H.: Two-level quantum systems: States, phases, and holonomy. Amer. J. Phys. 59 6 503-509 (1991). DOI 10.1119/1.16809
Partner of
EuDML logo