Previous |  Up |  Next

Article

Keywords:
loop; group; connected transversals
Summary:
In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.
References:
[1] Amberg B., Franciosi S., de Giovanni F.: Products of Groups. Clarendon Press, New York, 1992. MR 1211633 | Zbl 0774.20001
[2] Bruck R.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354. MR 0017288 | Zbl 0061.02201
[3] Huppert B.: Endliche Gruppen I. Springer, Berlin-New York, 1967. MR 0224703 | Zbl 0412.20002
[4] Kepka T.: On the abelian inner permutations groups of loops. Comm. Algebra 26 (1998), 857-861. DOI 10.1080/00927879808826169 | MR 1606178
[5] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233-236. DOI 10.1007/BF01198806 | MR 1201636
[6] Niemenmaa M.: On loops which have dihedral $2$-groups as inner mapping groups. Bull. Austral. Math. Soc. 52 (1995), 153-160. DOI 10.1017/S0004972700014520 | MR 1344268 | Zbl 0838.20080
[7] Niemenmaa M.: On finite loops and their inner mapping groups. Comment. Math. Univ. Carolin. 45 (2004), 341-347. MR 2075281 | Zbl 1101.20045
[8] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112-122. DOI 10.1016/0021-8693(90)90152-E | MR 1076080 | Zbl 0706.20046
[9] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups in finite groups. Bull. London Math. Soc. 24 (1992), 343-346. DOI 10.1112/blms/24.4.343 | MR 1165376 | Zbl 0793.20064
[10] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups. Bull. Austral. Math. Soc. 49 (1994), 121-128. DOI 10.1017/S0004972700016166 | MR 1262682 | Zbl 0799.20020
Partner of
EuDML logo