Previous |  Up |  Next

Article

Keywords:
Moufang quasigroups; Moufang loops; identities of Bol-Moufang type
Summary:
We contrast the simple proof that a quasigroup which satisfies the Moufang identity $(x\cdot yz)x = xy\cdot zx$ is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity $(xy\cdot z)y=x(y\cdot zy)$ is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.
References:
[1] Drápal A., Jedlička P.: On loop identities that can be obtained by nuclear identification. submitted.
[2] Fenyves F.: Extra loops I. Publ. Math. Debrecen 15 (1968), 235-238. MR 0237695 | Zbl 0172.02401
[3] Fenyves F.: Extra loops II. Publ. Math. Debrecen 16 (1969), 187-192. MR 0262409
[4] Garrison G.R.: Quasi-groups. Ann. Math. (2) 41 (1940), 474-487. MR 0002150 | Zbl 0024.15005
[5] Izbash V.I., Shcherbacov V.A.: On quasigroups with Moufang identity. Abstracts of third Internat. Conf. in memory of M.I. Karbapolov, Krasnoyarsk, August 1993 (in Russian), pp.134-135. Zbl 1027.20507
[6] Kunen K.: Moufang quasigroups. J. Algebra 183 (1996), 231-234. DOI 10.1006/jabr.1996.0216 | MR 1397396 | Zbl 0855.20056
[7] Kunen K.: Quasigroups, loops, and associative laws. J. Algebra 185 (1996), 194-204. DOI 10.1006/jabr.1996.0321 | MR 1409983 | Zbl 0860.20053
[8] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type. Algebra Universalis 54 (2005), 259-271. DOI 10.1007/s00012-005-1941-1 | MR 2219409 | Zbl 1102.20054
[9] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: an equational reasoning approach. J. Algebra 293 (2005), 17-33. DOI 10.1016/j.jalgebra.2005.07.011 | MR 2173964 | Zbl 1101.20046
[10] Shcherbacov V.A., Izbash V.I.: On quasigroups with Moufang identity. Bul. Acad. Stiinte Repub. Moldova Mat. 1998 2 109-116. MR 1788977 | Zbl 1027.20507
Partner of
EuDML logo