Previous |  Up |  Next

Article

Keywords:
$\aleph$-space; $k$-network; closed map; countably bi-quotient map
Summary:
In this paper we improve some mapping theorems on $\aleph$-spaces. For instance we show that an $\aleph$-space is preserved by a closed and countably bi-quotient map. This is an improvement of Yun Ziqiu's theorem: an $\aleph$-space is preserved by a closed and open map.
References:
[1] Gao Z.M.: $\aleph$-space is invariant under perfect mappings. Questions Answers Gen. Topology 5 (1987), 271-279. MR 0917885 | Zbl 0636.54026
[2] Gao Z.M., Hattori Y.: A characterization of closed $s$-images of metric spaces. Tsukuba J. Math. 11 (1987), 367-370. MR 0926463 | Zbl 0643.54034
[3] Junnila H., Ziqiu Y.: $\aleph$-spaces and a space with a $\sigma$-hereditarily closure-preserving $k$-network. Topology Appl. 44 (1992), 209-215. DOI 10.1016/0166-8641(92)90096-I | MR 1173260
[4] Lin S.: Mapping theorems on $\aleph$-spaces. Topology Appl. 30 (1988), 159-164. DOI 10.1016/0166-8641(88)90014-4 | MR 0967752 | Zbl 0663.54017
[5] Liu C.: Notes on closed mappings. Houston J. Math. 33 (2007), 249-259. MR 2287853 | Zbl 1133.54018
[6] Liu C., Sakai M., Tanaka Y.: Topological groups with a certain point-countable cover. Topology Appl. 119 (2002), 209-217. DOI 10.1016/S0166-8641(01)00066-9 | MR 1886095 | Zbl 0997.54059
[7] O'Meara P.: On paracompactness in function spaces with the compact open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189. DOI 10.2307/2037695 | MR 0276919 | Zbl 0214.21105
[8] Siwiec F.: Sequence-covering and countably bi-quotient mappings. General Topology Appl. 1 (1971), 143-154. DOI 10.1016/0016-660X(71)90120-6 | MR 0288737 | Zbl 0218.54016
[9] Siwiec F., Mancuso V.J.: Relations among certain mappings and conditions for their equivalence. General Topology Appl. 1 (1971), 33-41. DOI 10.1016/0016-660X(71)90108-5 | MR 0282347 | Zbl 0216.44203
[10] Tanaka Y.: Point-countable covers and $k$-networks. Topology Proc. 12 (1987), 327-349. MR 0991759 | Zbl 0676.54035
[11] Ziqiu Y.: A new characterization of $\aleph$-spaces. Topology Proc. 16 (1991), 253-256. Zbl 0784.54029
Partner of
EuDML logo