Previous |  Up |  Next

Article

Keywords:
normal and countably paracompact; set-avoiding selections
Summary:
We give a characterization of normal and countably paracompact spaces via continuous set-avoiding selections.
References:
[1] Alexandroff P., Pasynkov B.A.: Introduction to Dimension Theory (Russian). Nauka, Moscow, 1973.
[2] Barov S., Dijkstra J.J.: On boundary avoiding selections and some extension theorems. Pacific J. Math. 203 1 (2002), 79-87. DOI 10.2140/pjm.2002.203.79 | MR 1895926 | Zbl 1059.54020
[3] Barov S., Dijkstra J.J.: On closed sets with convex projections under narrow sets of directions. Trans. Amer. Math. Soc., to appear. MR 2434297 | Zbl 1156.52002
[4] Dowker C.H.: On countably paracompact spaces. Canad. J. Math. 3 (1951), 219-224. DOI 10.4153/CJM-1951-026-2 | MR 0043446 | Zbl 0042.41007
[5] Engelking R.: General Topology. translated from Polish by the author, 2nd ed., Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] Katětov M.: On real valued functions in topological spaces. Fund. Math. 38 (1951), 85-91. MR 0050264
[7] Michael E.: Continuous selections I. Ann. of Math. (2) 63 (1956), 361-382. DOI 10.2307/1969615 | MR 0077107 | Zbl 0071.15902
[8] van Mill J.: The infinite dimensional topology of function spaces. North-Holland Mathematical Library, 64, Elsevier Science B.V., Amsterdam, 2001. MR 1851014 | Zbl 0969.54003
Partner of
EuDML logo