Previous |  Up |  Next

Article

Title: A note on the paper ``Smoothness and the property of Kelley'' (English)
Author: Acosta, Gerardo
Author: Aguilar-Martínez, Álgebra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 669-676
.
Category: math
.
Summary: Let $X$ be a continuum. In Proposition 31 of J.J. Charatonik and W.J. Charatonik, {\it Smoothness and the property of Kelley\/}, Comment. Math. Univ. Carolin. {\bf 41} (2000), no. 1, 123--132, it is claimed that $L(X) = \bigcap _{p\in X}S(p)$, where $L(X)$ is the set of points at which $X$ is locally connected and, for $p\in X$, $a\in S(p)$ if and only if $X$ is smooth at $p$ with respect to $a$. In this paper we show that such equality is incorrect and that the correct equality is $P(X) = \bigcap _{p\in X}S(p)$, where $P(X)$ is the set of points at which $X$ is connected im kleinen. We also use the correct equality to obtain some results concerning the property of Kelley. (English)
Keyword: connectedness im kleinen
Keyword: continuum
Keyword: hyperspace
Keyword: local connectedness
Keyword: property of Kelley
Keyword: smoothness
MSC: 54B20
MSC: 54F15
MSC: 54F50
idZBL: Zbl 1199.54183
idMR: MR2375167
.
Date available: 2009-05-05T17:05:32Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119689
.
Reference: [1] Acosta G.: On smooth fans and unique hyperspace.Houston J. Math. 30 (2004), 99-115. MR 2048337
Reference: [2] Acosta G., Illanes A.: Continua which have the property of Kelley hereditarily.Topology Appl. 102 (2000), 151-162. Zbl 0940.54038, MR 1741483
Reference: [3] Charatonik J.J., Charatonik W.J.: Smoothness and the property of Kelley.Comment Math. Univ. Carolin. 41 1 (2000), 123-132. Zbl 1037.54506, MR 1756932
Reference: [4] Maćkowiak T.: On smooth continua.Fund. Math. 85 (1974), 79-95. MR 0365532
Reference: [5] Nadler S.B., Jr.: Hyperspaces of Sets.Marcel Dekker, Inc., New York and Basel, 1978. Zbl 1125.54001, MR 0500811
Reference: [6] Nadler S.B., Jr.: Continuum Theory.Marcel Dekker, Inc., New York, Basel and Hong Kong, 1992. Zbl 0819.54015, MR 1192552
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_10.pdf 199.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo